(本小題滿分15分)如圖所示,在直四棱柱中,, ,點是棱上一點.(Ⅰ)求證:;(5分)

(Ⅱ)求證:;(5分)

(Ⅲ)試確定點的位置,使得平面平面. (5分)

:(Ⅰ)略 (Ⅱ) 略(Ⅲ) 點為棱的中點


解析:

(Ⅰ)證明:由直四棱柱,得,

所以是平行四邊形,所以     (3分)

    而,,所以        …(5分)

(Ⅱ)證明:因為, 所以        ……(7分)

又因為,且,所以      ………… ……(9分)

,所以 ……(10分)

(Ⅲ)當點為棱的中點時,平面平面… (11分)

取DC的中點N,,連結(jié),連結(jié).

因為N是DC中點,BD=BC,所以;又因為DC是面ABCD與面的交線,而面ABCD⊥面,所以………(13分)

又可證得,的中點,所以BM∥ON且BM=ON,即BMON是平行四邊形,所以BN∥OM,所以O(shè)M平面,因為OM?面DMC1,所以平面平面……(15分)

點評:本小題主要考查直線與平面的位置關(guān)系,考查空間想象能力、邏輯思維能力和運算能力。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(。┤舨坏仁對任意的恒成立,求實數(shù)的取值范圍;

(ⅱ)若是兩個不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分15分).

已知、分別為橢圓

上、下焦點,其中也是拋物線的焦點,

在第二象限的交點,且

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點P(1,3)和圓,過點P的動直線與圓相交于不同的兩點A,B,在線段AB取一點Q,滿足:,)。求證:點Q總在某定直線上。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點分別為、,過的直線與橢圓相交于A、B兩點。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試理數(shù) 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習(xí)冊答案