13.設(shè)實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≤0}\\{x+y-2≤0}\end{array}\right.$,則z=y-2x的最小值為( 。
A.5B.$\frac{1}{2}$C.2D.1

分析 畫出可行域,由z=y-2x,則y=2x+z,由它在y軸的截距最小,得到z最小.

解答 解:由已知得到平面區(qū)域如圖:由z=y-2x,則y=2x+z,
由它在y軸的截距最小,得到z最小,
由圖可知當(dāng)直線過B($\frac{1}{2}$,$\frac{3}{2}$)時(shí),z 最小,所以最小值為$\frac{3}{2}$-2×$\frac{1}{2}$=$\frac{1}{2}$;
故選:B

點(diǎn)評 本題考查了簡單線性規(guī)劃問題;只要正確畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最值即可,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.把函數(shù)y=(x-2)2+1的圖象向左平移1個(gè)單位,再向上平移1個(gè)單位后,所得圖象對應(yīng)的函數(shù)解析式是(  )
A.y=(x-3)2+2B.y=(x-3)2C.y=(x-1)2+2D.y=(x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列4個(gè)命題:
①函數(shù)$y=\frac{1}{x}$在定義域上是減函數(shù)
②命題“若x2-x=0,則x=1”的逆否命題為“若x≠1,則x2-x≠0”;
③若“¬p或q”是假命題,則“p且¬q”是真命題;
④?a,b∈(0,+∞),當(dāng)a+b=1時(shí),$\frac{1}{a}+\frac{1}=3$;
其中正確命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若兩個(gè)正實(shí)數(shù)m,n滿足$\frac{9}{m}$+$\frac{4}{n}$=3,則mn的最小值為( 。
A.16B.18C.4.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|x2-5x-6=0},則A∩N*=( 。
A.B.{-1}C.{1}D.{6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且$\frac{(a+b)^{2}-{c}^{2}}{ab}$=1.
(Ⅰ)求∠C;
(Ⅱ)若c=$\sqrt{3}$,b=$\sqrt{2}$,求∠B及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a∈R,則“a=2或a=-2”是“直線l1:x+ay+3=0與直線l2:ax+4y+6=0平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中錯(cuò)誤的是( 。
A.若命題p為真命題,命題q為假命題,則命題“p∨(¬q)”為真命題
B.命題“若a+b≠7,則a≠2或b≠5”為真命題
C.命題p:?x>0,sinx>2x-1,則¬p為?x>0,sinx≤2x-1
D.命題“若x2-x=0,則x=0或x=1”的否命題為“若x2-x=0,則x≠0且x≠1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y的最小值為$\frac{8}{3}$.

查看答案和解析>>

同步練習(xí)冊答案