三位同學在研究函數(shù)(x∈R) 時,分別給出下面三個結(jié)論:
①函數(shù)f(x)的值域為 (-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則對任意n∈N*恒成立.
你認為上述三個結(jié)論中正確的個數(shù)有   
【答案】分析:函數(shù)化為分段函數(shù)即函數(shù)∵f(-x)=-f(x)∴函數(shù)為奇函數(shù),從而判斷函數(shù)當x≥0時的性質(zhì)即可,由值域和單調(diào)性可得①②正確,③的正確性可用數(shù)學歸納法證明
解答:解:函數(shù)化為分段函數(shù)即函數(shù)
∵f(-x)=-f(x)
∴函數(shù)為奇函數(shù),
∵x≥0時,f(x)==∈[0,1)
∴函數(shù)f(x)的值域為 (-1,1),故①正確
∵x≥0時,f(x)==為[0,+∞)的單調(diào)增函數(shù)
∴函數(shù)f(x)為R上的單調(diào)增函數(shù),
∴若x1≠x2,則一定有f(x1)≠f(x2),故②正確
下面用數(shù)學歸納法證明③正確
證明:n=1時,命題顯然成立;
假設(shè)n=k時命題成立,即
則n=k+1時,fk+1(x)=f(fk(x))===
即n=k+1時命題成立
對任意n∈N*恒成立
故答案為3
點評:本題考查了函數(shù)的值域的求法,函數(shù)單調(diào)性的定義及判斷方法,函數(shù)與數(shù)列的綜合,解題時要緊緊抓住函數(shù)的奇偶性解決問題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2009•南匯區(qū)二模)三位同學在研究函數(shù)f(x)=
x
1+|x|
(x∈R) 時,分別給出下面三個結(jié)論:
①函數(shù)f(x)的值域為 (-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對任意n∈N*恒成立.
你認為上述三個結(jié)論中正確的個數(shù)有
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:南匯區(qū)二模 題型:填空題

三位同學在研究函數(shù)f(x)=
x
1+|x|
(x∈R) 時,分別給出下面三個結(jié)論:
①函數(shù)f(x)的值域為 (-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對任意n∈N*恒成立.
你認為上述三個結(jié)論中正確的個數(shù)有______.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年四川省南充高中高三第六次月考數(shù)學試卷(理科)(解析版) 題型:填空題

三位同學在研究函數(shù)(x∈R) 時,分別給出下面三個結(jié)論:
①函數(shù)f(x)的值域為 (-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則對任意n∈N*恒成立.
你認為上述三個結(jié)論中正確的個數(shù)有   

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年四川省內(nèi)江市威遠中學高三選填題強化訓練13(理科)(解析版) 題型:解答題

三位同學在研究函數(shù)(x∈R) 時,分別給出下面三個結(jié)論:
①函數(shù)f(x)的值域為 (-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則對任意n∈N*恒成立.
你認為上述三個結(jié)論中正確的個數(shù)有   

查看答案和解析>>

科目:高中數(shù)學 來源:2009年上海市南匯區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

三位同學在研究函數(shù)(x∈R) 時,分別給出下面三個結(jié)論:
①函數(shù)f(x)的值域為 (-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則對任意n∈N*恒成立.
你認為上述三個結(jié)論中正確的個數(shù)有   

查看答案和解析>>

同步練習冊答案