函數(shù)y=ln的圖象大致為( )
A.
B.
C.
D.
【答案】分析:化簡函數(shù)的解析式為ln(1-),求出它的定義域為(0,+∞),y<0,且y是(0,+∞)上的增函數(shù),結(jié)合所給的選項,得出結(jié)論.
解答:解:∵函數(shù)y=ln=ln=ln(1-),由 1->0 可得x>0,
故函數(shù)的定義域為(0,+∞).
再由 0<1-<1,可得 y<0,且y是(0,+∞)上的增函數(shù),
故選C.
點評:本題主要考查函數(shù)的圖象特征,函數(shù)的定義域和單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)設(shè)函數(shù)f(x)=ln(x+a)-x2
(1)若a=0,求f(x)在(0,m](m>0)上的最大值g(m).
(2)若f(x)在區(qū)間[1,2]上為減函數(shù),求a的取值范圍.
(3)若直線y=x為函數(shù)f(x)的圖象的一條切線,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標(biāo)系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當(dāng)n為正整數(shù)時,定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)-x2
(Ⅰ)當(dāng)a=0時,求f(x)在(0,e]上的最大值;
(Ⅱ)若f(x)在區(qū)間[1,2]上為減函數(shù),求a的取值范圍;
(Ⅲ)是否存在實數(shù)a,使直線y=x為函數(shù)f(x)的圖象的一條切線,若存在,求a的值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省衡水中學(xué)2012屆高三第四次調(diào)研考試數(shù)學(xué)理科試題 題型:044

設(shè)函數(shù)f(x)=ln(x+a)-x2

(1)若a=0,求f(x)在(0,m](m>0)上的最大值g(m).

(2)若f(x)在區(qū)間[1,2]上為減函數(shù),求a的取值范圍.

(3)若直線y=x為函數(shù)f(x)的圖象的一條切線,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年山東省棗莊市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=lnx-ax2+bx(a>0),且f′(1)=0
(1)試用含有a的式子表示b,并求f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)f(x)的最大值為g(a),試證明不等式:g(a)>ln(1+)-1
(3)首先閱讀材料:對于函數(shù)圖象上的任意兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)圖象上存在點M(x,y)(x∈(x1,x2)),使得f(x)在點M處的切線l∥AB,則稱AB存在“相依切線”特別地,當(dāng)x=時,則稱AB存在“中值相依切線”.請問在函數(shù)f(x)的圖象上是否存在兩點A(x1,y1),B(x2,y2),使得AB存在“中值相依切線”?若存在,求出一組A、B的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案