如圖,Rt△ABC的頂點坐標A(-3,0),直角頂點B(-1,-),頂點C在x軸上.
(1)求BC邊所在直線方程;
(2)M為Rt△ABC外接圓的圓心,求圓M的方程;
(3)直線l與圓相切于第一象限,求切線與兩坐標軸所圍成的三角形面積最小時的切線方程.
【答案】分析:(1)由頂點B,C的坐標可求BC的斜率,再根據(jù)點C(3,0)可求BC邊所在直線方程;
(2)Rt△ABC外接圓是以O為原點,3為半徑的圓,從而可求圓M的方程;
(3)設直線方程為,利用直線l與圓相切可知,從而利用均值不等式有ab≥18,因此可求直線方程.
解答:解:(1),∵C(3,0),∴
(2)由(1)知C(3,0),∵M為Rt△ABC外接圓的圓心,所以M坐標為(0,0),所以圓M:x2+y2=9.
(3)設直線方程為,即
由相切可知.由均值不等式,則ab≥18.
所以,當且僅當時等號成立,則直線方程為
點評:本題主要考查直線與圓的方程的求解,考查基本不等式的運用,屬于基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,Rt△ABC的頂點坐標A(-3,0),直角頂點B(-1,-2
2
),頂點C在x軸上.
(1)求BC邊所在直線方程;
(2)M為Rt△ABC外接圓的圓心,求圓M的方程;
(3)直線l與圓相切于第一象限,求切線與兩坐標軸所圍成的三角形面積最小時的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,Rt△ABC的頂點坐標A(-3,0),直角頂點B(-1,-數(shù)學公式),頂點C在x軸上.
(1)求BC邊所在直線方程;
(2)M為Rt△ABC外接圓的圓心,求圓M的方程;
(3)直線l與圓相切于第一象限,求切線與兩坐標軸所圍成的三角形面積最小時的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,Rt△ABC的兩條直角邊長分別為a和b(a>b),A與B兩點分別在x軸的正半軸和y軸的正半軸上滑動,求直角頂點C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年北京四中高一(下)期末數(shù)學試卷(解析版) 題型:解答題

如圖,Rt△ABC的頂點坐標A(-3,0),直角頂點B(-1,-),頂點C在x軸上.
(1)求BC邊所在直線方程;
(2)M為Rt△ABC外接圓的圓心,求圓M的方程;
(3)直線l與圓相切于第一象限,求切線與兩坐標軸所圍成的三角形面積最小時的切線方程.

查看答案和解析>>

同步練習冊答案