分析 (1)推導(dǎo)出MN∥AD,PC⊥AD,AD⊥AC,從而AD⊥平面PAC,進(jìn)而AD⊥PA,MN⊥PA,再由CN⊥PA,能證明PA⊥平面CMN.
(2)取CD的中點為Q,連結(jié)MQ、AQ,推導(dǎo)出MQ∥PC,從而MQ∥平面PBC,再求出AQ∥平面,從而平面AMQ∥平面PCB,由此能證明AM∥平面PBC.
解答 證明:(1)∵M(jìn),N分別為PD、PA的中點,
∴MN為△PAD的中位線,∴MN∥AD,
∵PC⊥底面ABCD,AD?平面ABCD,∴PC⊥AD,
又∵AD⊥AC,PC∩AC=C,∴AD⊥平面PAC,
∴AD⊥PA,∴MN⊥PA,
又∵PC=AC,N為PA的中點,∴CN⊥PA,
∵M(jìn)N∩CN=N,MN?平面CMN,CM?平面CMN,
∴PA⊥平面CMN.
解(2)取CD的中點為Q,連結(jié)MQ、AQ,
∵M(jìn)Q是△PCD的中位線,∴MQ∥PC,
又∵PC?平面PBC,MQ?平面PBC,∴MQ∥平面PBC,
∵AD⊥AC,∠ACD=60°,∴∠ADC=30°.
∴∠DAQ=∠ADC=30°,∴∠QAC=∠ACQ=60°,
∴∠ACB=60°,∴AQ∥BC,
∵AQ?平面PBC,BC?平面PBC,∴AQ∥平面PBC,
∵M(jìn)Q∩AQ=Q,∴平面AMQ∥平面PCB,
∵AM?平面AMQ,∴AM∥平面PBC.
點評 本題考查線面垂直、線面平行的證明,考查空間中線線、線面、面面間的位置關(guān)系,考查推理論證能力、運算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 2 | C. | ±2 | D. | -4或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com