如圖:已知直線l與平行直線a、b、c都相交,

求證:l與a、b、c共面。


解析:

設L∩a=A,

l∩b=A,L∩c=C,∵a∥b,∴a、b可確定一個平面α,∵A∈a,B∈b,∴A∈α,B∈α,∴ABα,即Lα.∵b∥c,∴b、c可確定一個平面β,

同理lβ.∵α、β均過相交直線b、l,∴α、β重合,∴a、b、c、l共面;

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線l與拋物線y=
1
4
x2
相切于點P(2,1),且與x軸交于點A,O為坐標原點,定點B的坐標為(2,0).
(1)若動點M滿足
AB
BM
+
2
|
AM
|=0
,求動點M的軌跡C的方程;
(2)若過點B的直線l'(斜率不等于零)與(1)中的軌跡C交于不同
的兩點E、F(E在B、F之間),且
BE
BF
,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線l與拋物線x2=4y相切于點P(2,1),且與x軸交于點A,定點B的坐標為(2,0).
(I)若動點M滿足
AB
BM
+
2
|
AM
|=0
,求點M的軌跡C;
(Ⅱ)若過點B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線l與拋物線y2=x相交于A(x1,y1),B(x2,y2)兩點,與x軸相交于點M,若y1y2=-1,
(1)求證:OA⊥OB;
(2)M點的坐標為(1,0),求△AOB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:湖北省荊州中學2008高考復習立體幾何基礎題題庫一(有詳細答案)人教版 人教版 題型:047

如圖:已知直線l與平行直線ab、c都相交,求證:la、b、c共面.

查看答案和解析>>

同步練習冊答案