已知f(x)是可導(dǎo)的偶函數(shù),且,則曲線y=f(x)在(-2,1)處的切線方程是   
【答案】分析:先根據(jù)條件求出f'(2)的值,然后根據(jù)f(x)是可導(dǎo)的偶函數(shù)求出f'(-2)的值,最后根據(jù)點(diǎn)斜式求出切線方程即可.
解答:解:∵
∴f'(2)=
∵f(x)是可導(dǎo)的偶函數(shù),
∴f'(-2)=2
∴曲線y=f(x)在(-2,1)處的切線方程是y-1=2(x+2)即y=2x+5
故答案為:y=2x+5
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及導(dǎo)數(shù)的幾何意義和函數(shù)奇偶性的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是可導(dǎo)的函數(shù),且f′(x)<f(x)對于x∈R恒成立,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是可導(dǎo)的函數(shù),且
lim
x→0
f(x+2)-f(2)
2x
=-2
,則曲線y=f(x)在點(diǎn)(2,2)處的切線的一般式方程是
4x+y-10=0
4x+y-10=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•寧波模擬)已知f(x)是可導(dǎo)的偶函數(shù),且
lim
x→0
f(2+x)-f(2)
2x
=-1
,則曲線y=f(x)在(-2,1)處的切線方程是
y=2x+5
y=2x+5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧波模擬 題型:填空題

已知f(x)是可導(dǎo)的偶函數(shù),且
lim
x→0
f(2+x)-f(2)
2x
=-1
,則曲線y=f(x)在(-2,1)處的切線方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年浙江省杭州市重點(diǎn)高中高考命題比賽數(shù)學(xué)參賽試卷14(理科)(解析版) 題型:選擇題

已知f(x)是可導(dǎo)的函數(shù),且f′(x)<f(x)對于x∈R恒成立,則( )
A.f(1)<ef(0),f(2013)>e2013f(0)
B.f(1)>ef(0),f(2013)>e2013f(0)
C.f(1)>ef(0),f(2013)<e2013f(0)
D.f(1)<ef(0),f(2013)<e2013f(0)

查看答案和解析>>

同步練習(xí)冊答案