已知數(shù)列滿足且對(duì)一切,

(Ⅰ)求證:對(duì)一切
(Ⅱ)求數(shù)列通項(xiàng)公式.   
(Ⅲ)求證:
見(jiàn)解析
第一問(wèn)利用,已知表達(dá)式,可以得到,然后得到,從而求證 。
第二問(wèn),可得數(shù)列的通項(xiàng)公式。
第三問(wèn)中,利用放縮法的思想,我們可以得到
然后利用累加法思想求證得到證明。
解:  (1) 證明:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義數(shù)列,且對(duì)任意正整數(shù),有.
(1)求數(shù)列的通項(xiàng)公式與前項(xiàng)和;
(2)問(wèn)是否存在正整數(shù),使得?若存在,則求出所有的正整數(shù)對(duì)
;若不存在,則加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)設(shè)數(shù)列是首項(xiàng)為0的遞增數(shù)列,,
 滿足:對(duì)于任意的總有兩個(gè)不同的根. (Ⅰ)試寫(xiě)出,并求出;
(Ⅱ)求,并求出的通項(xiàng)公式;
(Ⅲ)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列中,,,數(shù)列中,,且點(diǎn)在直線上。
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)若,求數(shù)列的前項(xiàng)和;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)=的所有正的極小值點(diǎn)從小到大排成的數(shù)列為.
(Ⅰ)求數(shù)列的通項(xiàng)公式.
(Ⅱ)設(shè)的前項(xiàng)和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等比數(shù)列的公比,前項(xiàng)和為,若,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列定義如下:  , 則前項(xiàng)中使的項(xiàng)的個(gè)數(shù)是( ▲ )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知四個(gè)正數(shù)1,,,3中,前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,則=     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為等差數(shù)列的前項(xiàng)之和,若,則 ()
A.1B.-1C.2D.

查看答案和解析>>

同步練習(xí)冊(cè)答案