(14分)在正四棱柱中,E,F分別是的中點(diǎn),G為上任一點(diǎn),EC與底面ABCD所成角的正切值是4.
(Ⅰ)求證AGEF;
(Ⅱ)確定點(diǎn)G的位置,使AG面CEF,并說明理由;
(Ⅲ)求二面角的余弦值。
(1)略(2)CG=CC1(3)
【解析】∵是正四棱柱
∴ABCD是正方形,設(shè)其邊長為2a,ÐECD是EC與底面所成的角。而ÐECD=ÐCEC1, ∴CC1=4EC1=4a.……………1分
以A為原點(diǎn),AB、AD、AA1所在的直線分別為x軸,y軸,z軸,建立如圖所示的直角坐標(biāo)系。
則A(0,0,0),B(2a,0,0),C(2a,2a,0),D(0,2a,0),
A1(0,0,4a),B1(2a,0,4a),C1(2a,2a,4a),D1(0,2a,4a),
E(a,2a,4a),F(2a,a,4a),設(shè)G(2a,2a,b)(0<b<4a)………………3分
(Ⅰ)=(2a,2a,b),=(a,-a,0),=2a2-2a2+0=0,
∴AGEF ……………………………………………………6分
(Ⅱ)由(Ⅰ)知,使AG面CEF,只需AGCE,
只需=(2a,2a,b)×(-a,0,4a)=-2a2+4ab=0,
∴b=a,即CG=CC1時,AG面CEF。………………10分
(Ⅲ)由(Ⅱ)知,當(dāng)G(2a,2a, a)時,是平面CEF的一個法向量,
由題意可得,是平面CEC1的一個法向量,
設(shè)二面角的大小為q,
則cosq===,
二面角的余弦值為. …………………………14分
(運(yùn)用綜合法相應(yīng)給分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010年北京市豐臺區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題
(14分)在正四棱柱中,E,F分別是的中點(diǎn),G為上任一點(diǎn),EC與底面ABCD所成角的正切值是4.
(Ⅰ)求證AGEF;
(Ⅱ)確定點(diǎn)G的位置,使AG面CEF,并說明理由;
(Ⅲ)求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(14分)在正四棱柱中,E,F分別是的中點(diǎn),G為上任一點(diǎn),EC與底面ABCD所成角的正切值是4.
(Ⅰ)求證AGEF;
(Ⅱ)確定點(diǎn)G的位置,使AG面CEF,并說明理由;
(Ⅲ)求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(14分)在正四棱柱中,E,F分別是的中點(diǎn),G為上任一點(diǎn),EC與底面ABCD所成角的正切值是4.
(Ⅰ)求證AGEF;
(Ⅱ)確定點(diǎn)G的位置,使AG面CEF,并說明理由;
(Ⅲ)求二面角的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com