【題目】已知,若關(guān)于的方程恰好有 4 個不相等的實數(shù)解,則實數(shù)的取值范圍為(

A. B. C. D.

【答案】C

【解析】

化簡可得f(x)==

x≥0時,f′(x)=

0≤x<1時,f′(x)>0,當x≥1時,f′(x)≤0

∴f(x)在(0,1)上單調(diào)遞增,在(1,+∞)單調(diào)遞減;

x<0時,f′(x)=<0,f(x)為減函數(shù),

函數(shù)f(x)=在(0,+∞)上有一個最大值為f(1)=,作出函數(shù)f(x)的草圖如圖:

設(shè)m=f(x),當m>時,方程m=f(x)有1個解,

m=時,方程m=f(x)有2個解,

0<m<時,方程m=f(x)有3個解,

m=0時,方程m=f(x),有1個解,

m<0時,方程m=f(x)有0個解,

則方程f2(x)﹣tf(x)+t﹣1=0等價為m2﹣tm+t﹣1=0,

要使關(guān)于x的方程f2(x)﹣tf(x)+t﹣1=0恰好有4個不相等的實數(shù)根,

等價為方程m2﹣tm+t﹣1=0有兩個不同的根m10<m2,

設(shè)g(m)=m2﹣tm+t﹣1,

解得1<t<1+,

故答案選:C。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB.

(1)求AD1與面BB1D1D所成角的正弦值;
(2)點E在側(cè)棱AA1上,若二面角E﹣BD﹣C1的余弦值為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為 .類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠甲、乙兩個車間包裝同一種產(chǎn)品,在自動包裝傳送帶上每隔1小時抽一包產(chǎn)品,稱其重量(單位:克)是否合格,分別記錄抽查數(shù)據(jù),獲得重量數(shù)據(jù)的莖葉圖如圖.

(1)根據(jù)樣品數(shù)據(jù),計算甲、乙兩個車間產(chǎn)品重量的均值與方差,并說明哪個車間的產(chǎn)品的重量相對較穩(wěn)定;
(2)若從乙車間6件樣品中隨機抽取兩件,求所抽取的兩件樣品的重量之差不超過2克的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側(cè)棱,點分別為棱的中點, 的重心為,直線垂直于平面.

1)求證:直線平面

2)求二面角的余弦.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)). 

(1)若在其定義域內(nèi)單調(diào)遞增,求實數(shù)的取值范圍;

(2)若,且有兩個極值點, ),求取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,點E是PC的中點,連接DE,BD,BE.
(1)證明:DE⊥平面PBC.
(2)試判斷四面體EBCD是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,請說明理由;
(3)記陽馬P﹣ABCD的體積為V1 , 四面體EBCD的體積為V2 , 求 的值.

查看答案和解析>>

同步練習冊答案