已知函數(shù)
(1)求的單調(diào)區(qū)間;(2)求上的最小值.
(1)增區(qū)間:, ;減區(qū)間:(2)-18
【解析】
試題分析:解:(1)
令 得
若 則,故在, 上是增函數(shù)
若 則,故在上是減函數(shù)
(2)
考點(diǎn):函數(shù)的性質(zhì)
點(diǎn)評:對于比較復(fù)雜的函數(shù),要得到其性質(zhì),可通過導(dǎo)數(shù)來求解。在求單調(diào)區(qū)間中,要用到的結(jié)論是:為增函數(shù);為減函數(shù)。而求函數(shù)在一個區(qū)間中最值,通常是求出極值和區(qū)間兩端點(diǎn)對應(yīng)的函數(shù)值,然后得到最值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆山東省高一6月月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(1)求的最小正周期及取得最大值時x的集合;
(2)在平面直角坐標(biāo)系中畫出函數(shù)在上的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省五校高三第四次聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
已知函數(shù),
(1)求的單調(diào)區(qū)間;
(2)若對任意的,都存在,使得,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年浙江省高一上學(xué)期10月月考數(shù)學(xué)卷 題型:解答題
(本題8分)已知函數(shù)
(1) 求的定義域;
(2) 證明函數(shù)在 上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年河南省焦作市高一下學(xué)期數(shù)學(xué)必修4水平測試 題型:解答題
(10分)已知函數(shù).
(1)求的最小正周期;
(2)求在區(qū)間上的最大值和最小值以及取得最大值、最小值時x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com