點(diǎn)P在直線a上,直線a在平面α內(nèi)可記為

[  ]
A.

P∈a,aα

B.

Pa,aα

C.

Pa,a∈α

D.

P∈a,a∈α

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•威海二模)如圖,在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(0,p)(p>0),直線l:y=-p,點(diǎn)p在直線l上移動,R是線段PF與x軸的交點(diǎn),過R、P分別作直線l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求動點(diǎn)Q的軌跡C的方程;
(Ⅱ)在直線l上任取一點(diǎn)M做曲線C的兩條切線,設(shè)切點(diǎn)為A、B,求證:直線AB恒過一定點(diǎn);
(Ⅲ)對(Ⅱ)求證:當(dāng)直線MA,MF,MB的斜率存在時,直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P在直線a上,而直線a在平面α內(nèi),可記為(    )

A.Pα,a∈α          B.P∈a,aα           C.Pa,aα           D.P∈a,a∈α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省期末題 題型:解答題

長為3的線段AB的兩個端點(diǎn)A,B分別在x,y軸上移動,點(diǎn)P在直線AB上且滿足,
(Ⅰ)求點(diǎn)P的軌跡的方程;
(Ⅱ)記點(diǎn)P軌跡為曲線C,過點(diǎn)Q(2,1)任作直線l交曲線C于M,N兩點(diǎn),過M作斜率為的直線l′交曲線C于另一點(diǎn)R。求證:直線NR與直線OQ的交點(diǎn)為定點(diǎn)(O為坐標(biāo)原點(diǎn)),并求出該定點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省沈陽二中等重點(diǎn)中學(xué)協(xié)作體高考預(yù)測數(shù)學(xué)試卷05(理科)(解析版) 題型:解答題

已知點(diǎn)R(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上,且滿足,
(Ⅰ)當(dāng)點(diǎn)P在y軸上移動時,求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)A(x1,y1)、B(x2,y2)為軌跡C上兩點(diǎn),且x1>1,y1>0,N(1,0),求實(shí)數(shù)λ,使,且

查看答案和解析>>

同步練習(xí)冊答案