已知橢圓=1(a>1)交x軸、y軸的正半軸于M、N兩點,試問:|MN|會小于2a嗎?說明理由.

答案:
解析:

  解:當(dāng)x=0時,y=|a-1|=a-1,

  當(dāng)y=0時,x=|a+1|=a+1,

  ∴橢圓交x、y軸正半軸的交點分別為M(a+1,0),N(0,a-1)兩點.

  ∴|MN|=(a+1)2+(a-1)2

 。

  ×2a=a.

  ∴|MN|可以小于2a.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:東北三省2011屆爾雅高考特快信息考試數(shù)學(xué)試題 題型:013

已知橢圓=1(a>b>0)與雙曲線=1(m>0,n>0)有相同的焦點(-c,0)和(c,0),若c是a,m的等比中項,n2是2m2與c2的等差中項,則橢圓的離心率是

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高三3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分15分)已知橢圓=1(a為常數(shù),且a>1),向量=(1, t) (t >0),過點A(-a, 0)且以為方向向量的直線與橢圓交于點B,直線BO交橢圓于點C(O為坐標(biāo)原點).

(1) 求t表示△ABC的面積S( t );

(2) 若a=2,t∈[, 1],求S( t )的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分15分)已知橢圓=1(a為常數(shù),且a>1),向量=(1, t) (t >0),過點A(-a, 0)且以為方向向量的直線與橢圓交于點B,直線BO交橢圓于點C(O為坐標(biāo)原點).

(1) 求t表示△ABC的面積S( t );

(2) 若a=2,t∈[, 1],求S( t )的最大值.

查看答案和解析>>

同步練習(xí)冊答案