已知tanα=2.
(1)求
3sinα+2cosα
sinα-cosα
的值;
(2)求
cos(π-α)cos(
π
2
+α)sin(α-
2
)
sin(3π+α)sin(α-π)cos(π+α)
的值;
(3)若α是第三象限角,求cosα的值.
考點:運用誘導(dǎo)公式化簡求值,同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:(1)原式分子分母除以cosα,利用同角三角函數(shù)間的基本關(guān)系變形,將tanα的值代入計算即可求出值;
(2)原式利用誘導(dǎo)公式化簡后,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將tanα的值代入計算即可求出值;
(3)利用同角三角函數(shù)間的基本關(guān)系列出關(guān)系式,tanα的值代入計算即可求出cosα的值.
解答: 解:(1)∵tanα=2,
∴原式=
3tanα+2
tanα-1
=
3×2+2
2-1
=8;
(2)∵tanα=2,
∴原式=
-cosα(-sinα)cosα
-sinα(-sinα)(-cosα)
=-
cosα
sinα
=-
1
tanα
=-
1
2
;
(3)∵tanα=2,
∴cos2α=
cos2α
sin2α+cos2α
=
1
tan2α+1
=
1
5
,
∵α為第三象限角,∴cosα<0,
∴cosα=-
5
5
點評:此題考查了運用誘導(dǎo)公式化簡求值,以及同角三角函數(shù)基本關(guān)系的運用,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
3
2
-
1
2
(sinx-cosx)2
(1)求它的最小正周期和最大值;
(2)求它的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知向量
a
,
b
,計算6
a
-[4
a
-
b
-5(2
a
-3
b
)]+(
a
+7
b
);
(2)已知向量|
a
|=6,|
b
|=4,向量
a
b
的夾角是60°,求(
a
+2
b
)•(
a
-3
b
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用0,1,2,3,4,5組成無重復(fù)數(shù)字的四位數(shù).
(1)共可組成多少個四位數(shù)?
(2)將這些四位數(shù)從小到大排列,第112個數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x,其反函數(shù)為y=g(x).
(1)求g(4)+g(8)-g(
32
9
)
的值;
(2)解不等式g(
x
1-x
)<f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4,若焦點在x軸上的橢圓
x2
a2
+
y2
b2
=1
 過點p(0,1),且其長軸長等于圓O的直徑.
(1)求橢圓的方程;
(2)過點P作兩條互相垂直的直線l1與l2,l1與圓O交于A、B兩點,l2交橢圓于另一點C.
(Ⅰ)設(shè)直線l1的斜率為k,求弦AB長;
(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:|x-1|-|x+2|<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(θ)=1-2sinθ,g(θ)=3-4cos2θ.記F(θ)=a•f(θ)+b•g(θ)(其中a,b都為常數(shù),且b>0).
(1)若a=4,b=1,求F(θ)的最大值及此時的θ值;
(2)若θ∈[0,
π
2
],求F(θ)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列1,4,7,…中,6019是它的第
 
項.

查看答案和解析>>

同步練習(xí)冊答案