設(shè)等差數(shù)列的前n項(xiàng)和為,且,.設(shè)數(shù)列前n項(xiàng)和為,且,求數(shù)列、的通項(xiàng)公式.
,.
解析試題分析:此類問題的一般處理方法是,首先依題意,建立“”的方程組,確定數(shù)列的通項(xiàng)公式,進(jìn)一步利用,應(yīng)用與的關(guān)系,確定的通項(xiàng)公式.屬于中檔題,易錯點(diǎn)是忽視對兩類情況的討論.
試題解析:設(shè)等差數(shù)列的公差為,
∵,, 2分
∴,, 4分
所以數(shù)列的通項(xiàng)公式; 6分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5f/c/1jmvl3.png" style="vertical-align:middle;" />, 7分
當(dāng)時(shí),, 8分
當(dāng)時(shí),, 10分
且時(shí)不滿足, 11分
所以數(shù)列的通項(xiàng)公式為. 12分
考點(diǎn):等差數(shù)列的通項(xiàng)公式、求和公式,數(shù)列的前項(xiàng)和與第項(xiàng)之間的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知無窮數(shù)列的前項(xiàng)和為,且滿足,其中、、是常數(shù).
(1)若,,,求數(shù)列的通項(xiàng)公式;
(2)若,,,且,求數(shù)列的前項(xiàng)和;
(3)試探究、、滿足什么條件時(shí),數(shù)列是公比不為的等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前n項(xiàng)和為,已知,,數(shù)列是公差為d的等差數(shù)列,.
(1)求d的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列{an}中,為其前n項(xiàng)和,且
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項(xiàng)和為.且
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足:,,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列的前項(xiàng)和.設(shè)公差不為零的等差數(shù)列滿足:,且成等比.
(Ⅰ) 求及;
(Ⅱ) 設(shè)數(shù)列的前項(xiàng)和為.求使的最小正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列.設(shè),,數(shù)列滿足;
(Ⅰ)求證:數(shù)列成等差數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)若對一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是公比大于1的等比數(shù)列,為其前項(xiàng)和已知,且,,構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,,數(shù)列滿足.
(1)證明數(shù)列是等差數(shù)列并求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com