設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=x2
(I)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求實(shí)數(shù)p的值;
(II)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)p的取值范圍.
(Ⅰ)方法一:∵f′(x)=p+
p
x2
-
2
x
,∴f'(1)=2p-2.
設(shè)直線,并設(shè)l與g(x)=x2相切于點(diǎn)M(x0,y0
∵g'(x)=2x,∴2x0=2p-2,解得
x0=p-1,y0=(p-1)2,
代入直線l方程解得p=1或p=3.
方法二:將直線方程l代入y=x2得2(p-1)(x-1)=0,
∴△=4(p-1)2-8(p-1)=0,
解得p=1或p=3.
(Ⅱ)∵f′(x)=p+
p
x2
-
2
x
=
px2-2x+p
x2
..
①要使f(x)為單調(diào)增函數(shù),f'(x)≥0在(0,+∞)恒成立,
即px2-2x+p≥0在(0,+∞)恒成立,即p≥
2x
x2+1
=
2
x+
1
x
在(0,+∞)恒成立,
2
x+
1
x
≤1
,所以當(dāng)p≥1,此時(shí)f(x)在(0,+∞)為單調(diào)增函數(shù);   
②要使f(x)為單調(diào)減函數(shù),須f'(x)<0在(0,+∞)恒成立,
即在(0,+∞)恒成立,即p≤
2x
x2+1
,(0,+∞)恒成立,又
2x
x2+1
≥0
,所以p≤0.當(dāng)p≤0時(shí),f(x)在(0,+∞)為單調(diào)減函數(shù).
綜上,若f(x)在(0,+∞)為單調(diào)函數(shù),則p的取值范圍為p≥1或p≤0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
p
=(sinx,cosx+sinx),
q
=(2cosx,cosx-sinx),x∈R,設(shè)函數(shù)f(x)=
p
q

(I)求f(
π
3
)
的值及函數(shù)f(x)的最大值;
(II)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是實(shí)數(shù),e為自然對數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求p的值;
(3)若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宿州三模)設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
.(p是實(shí)數(shù),e是自然對數(shù)的底數(shù))
(1)當(dāng)p=2時(shí),求與函數(shù)y=f(x)的圖象在點(diǎn)A(1,0)處相切的切線方程;
(2)若f(x)在其定義域內(nèi)為單調(diào)遞增函數(shù),求p的取值范圍;
(3)若在[1,e]上至少存在一點(diǎn)xo,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•濱州一模)設(shè)函數(shù)f(x)=p(x-
1x
)-2lnx,g(x)=x2,
(I)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求實(shí)數(shù)p的值;
(II)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=p(x-數(shù)學(xué)公式)-2lnx,g(x)=數(shù)學(xué)公式(p是實(shí)數(shù),e為自然對數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求p的值;
(3)若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案