4.設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,若a2sinC=4sinA,cosB=$\frac{\sqrt{7}}{4}$,則△ABC的面積為( 。
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

分析 由正弦定理化簡已知可得ac=4,由cosB利用同角三角函數(shù)基本關(guān)系式可求sinB,根據(jù)三角形面積公式即可計(jì)算得解.

解答 解:∵a2sinC=4sinA,
∴由正弦定理可得:a2c=4a,解得:ac=4,
∵cosB=$\frac{\sqrt{7}}{4}$,可得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{4}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×$4×$\frac{3}{4}$=$\frac{3}{2}$.
故選:B.

點(diǎn)評(píng) 本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,三角形面積公式在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面內(nèi)將點(diǎn)A(2,1)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)$\frac{3π}{4}$,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為(-$\frac{3\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,角A,B,C的對(duì)邊分別為a、b、c,則“sinA>sinB”是“a>b”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.向量$\overrightarrow{a}$,$\overrightarrow$均為非零向量,$(\overrightarrow a-2\overrightarrow b)⊥\overrightarrow a,(\overrightarrow b-2\overrightarrow a)⊥\overrightarrow b$,則$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在Rt△ABC中,∠C=90°,$\overrightarrow{AB}=(1,x),\overrightarrow{AC}=(-1,2)$,則實(shí)數(shù)x=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.a(chǎn)1=$\frac{1}{2}$‘
a2=$\frac{1}{3}$(1-a1)=$\frac{1}{6}$;
a3=$\frac{1}{4}$(1-a1-a2)=$\frac{1}{12}$;
a4=$\frac{1}{5}$(1-a1-a2-a3)=$\frac{1}{20}$;

照此規(guī)律,當(dāng)n∈N*時(shí),an=$\frac{1}{n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x∈N|1<x<log2k},集合A中至少有2個(gè)元素,則( 。
A.k≥4B.k>4C.k≥8D.k>8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知b2+c2=a2+bc
(1)求角A的大小
(2)若△ABC的三個(gè)頂點(diǎn)都在單位圓上,且b2+c2=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實(shí)數(shù)x、y滿足:$\left\{\begin{array}{l}{x-1≤0}\\{x-y+1≥0}\\{x+y-1≥0}\end{array}\right.$,則z=2x-y的最大值為(  )
A.2B.0C.-1D.-3

查看答案和解析>>

同步練習(xí)冊(cè)答案