(Ⅰ)已知a>b>0,求證:
a
-
b
a-b

(Ⅱ)已知x,y,z均為實(shí)數(shù),且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
求證:a,b,c中至少有一個(gè)大于0.
分析:(Ⅰ)利用綜合法,證明0<(
a
-
b
2<(
a-b
2即可;
(Ⅱ)采用反證法,a、b、c中至少有一個(gè)大于零對(duì)立面是沒有一個(gè)大于0.故可假設(shè)三者皆小于等于0推出矛盾來(lái).
解答:證明:(Ⅰ)∵a>b>0,∴b<
ab
,∴2b<2
ab

-2
ab
<-2b

a-2
ab
+b<a+b-2b

∴0<(
a
-
b
2<(
a-b
2
a
-
b
a-b
;
(Ⅱ)假設(shè)a、b、c都不大于0,即a≤0,b≤0,c≤0,則a+b+c≤0.
而a+b+c=x2-2y+
π
2
+y2-2z+
π
3
+z2-2x+
π
6
=(x-1)2+(y-1)2+(z-1)2+π-3,
∵π-3>0,且無(wú)論x、y、z為何實(shí)數(shù),(x-1)2+(y-1)2+(z-1)2≥0,
∴a+b+c>0,這與a+b+c≤0矛盾
因此,a、b、c中至少有一個(gè)大于0.
點(diǎn)評(píng):本題的考點(diǎn)是不等式的證明,考查綜合法與反證法.反證法,其特征是先假設(shè)命題的否定成立,推證出矛盾說(shuō)明假設(shè)不成立,得出原命題成立.反證法一般適合用來(lái)證明正面證明較麻煩,而其對(duì)立面包含情況較少的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a<-b<0,化簡(jiǎn)|b-
a2
|
得(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>b>0,則3a,3b,4a由小到大的順序是
3b<3a<4a
3b<3a<4a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a<b<0,則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈(0,+∞),a2+
b2
2
=1
,則a
1+b2
的最大值是
3
2
4
3
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b>0,a+b=1,則
a+1
+
b+1
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案