在△ABC中,如果點A在BC邊上的射影是D,△ABC的三邊BC、AC、AB的長依次是a、b、c,則a=b•cosC+c•cosb,類比這一結論,推廣到空間:在四面體P-ABC中,△ABC、△PAB、△PBC、△PCA的面積依次為S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度數(shù)依次為α、β、γ,則S= .
【答案】分析:這是一個類比推理的題,在由平面圖形到空間圖形的類比推理中,一般是由點的性質(zhì)類比推理到線的性質(zhì),由線的性質(zhì)類比推理到面的性質(zhì),由已知在平面幾何中,若△ABC中,如果點A在BC邊上的射影是D,△ABC的三邊BC、AC、AB的長依次是a、b、c,則a=b•cosC+c•cosb,我們可以類比這一性質(zhì),推理出若四面體P-ABC中,△ABC、△PAB、△PBC、△PCA的面積依次為S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度數(shù)依次為α、β、γ,則S=S1cosα+S2cosβ+S3cosγ.
解答:解:由已知在平面幾何中,
在△ABC中,如果點A在BC邊上的射影是D,△ABC的三邊BC、AC、AB的長依次是a、b、c,則a=b•cosC+c•cosb,
我們可以類比這一性質(zhì),推理出:
若四面體P-ABC中,△ABC、△PAB、△PBC、△PCA的面積依次為S、S1、S2、S3,
二面角P-AB-C、P-BC-A、P-CA-B的度數(shù)依次為α、β、γ,則S=S1cosα+S2cosβ+S3cosγ.
故答案為:S1cosα+S2cosβ+S3cosγ.
點評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).