2.如圖畫的某幾何體的三視圖,網(wǎng)格紙上小正方形的邊長為1,則該幾何體的體積為(  )
A.48-πB.96-πC.48-2πD.96-2π

分析 該幾何體為一個(gè)長方體挖去兩個(gè)圓錐所得到的幾何體,即可求出體積.

解答 解:該幾何體為一個(gè)長方體挖去兩個(gè)圓錐所得到的幾何體,
體積為4×4×6-$\frac{1}{3}π×{1}^{2}×3×2$=96-2π,
故選D.

點(diǎn)評(píng) 本題考查了三視圖、體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓C的方程為:x2+y2-4x+3=0.直線l的方程為2x-y=0,點(diǎn)P在直線l上
(1)若Q(x,y)在圓C上,求$\frac{y+3}{x}$的范圍;
(2)若過點(diǎn)P作圓C的切線PA,PB切點(diǎn)為A,B.求證:經(jīng)過P,A,C,B四點(diǎn)的圓必過定點(diǎn)$({\frac{2}{5},\frac{4}{5}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點(diǎn)F(-2,0),G是圓${C_1}:{(x+4)^2}+{y^2}=16$上任意一點(diǎn).
(1)若直線FG與直線x=-4交于點(diǎn)T,且G為線段FT的中點(diǎn),求圓C被直線FG所截得的弦長;
(2)在平面上是否存在定點(diǎn)P,使得|GP|=2|GF|?若存在.,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若角α=-4,則α的終邊在( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知sinθ>0且cosθ<0,則角θ的終邊所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x3+bx2+cx-1在x=-2時(shí)取得極值,且在點(diǎn)(-1,f(-1))處的切線的斜率為-3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-1,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在區(qū)間[1,5]隨機(jī)地取一個(gè)數(shù)m,則方程m2x2+4y2=1表示焦點(diǎn)在y軸上的橢圓的概率是(  )
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.定義上凸函數(shù)如下:設(shè)f(x)為區(qū)間I上的函數(shù),若對(duì)任意的x1,x2∈I總有f($\frac{{x}_{1}+{x}_{2}}{2}$)≥$\frac{f({x}_{1})+f({x}_{2})}{2}$,則稱f(x)為I上的上凸函數(shù),某同學(xué)查閱資料后發(fā)現(xiàn)了上凸函數(shù)的如下判定定理和性質(zhì)定理:
判定定理:f(x)為上凸函數(shù)的充要條件是f″(x)≤0,x∈I,其中f″(x)為f(x)的導(dǎo)函數(shù)f′(x)的導(dǎo)數(shù).
性質(zhì)定理:若函數(shù)f(x)為區(qū)間I上的上凸函數(shù),則對(duì)I內(nèi)任意的x1,x2,…,xn,都有$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$≤f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$).
請(qǐng)問:在△ABC中,sinA+sinB+sinC的最大值為$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}+2cosθ}\\{y=2\sqrt{2}+2sinθ}\end{array}\right.$,(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為(3$\sqrt{2}$,$\frac{π}{2}$).
(Ⅰ)求直線l以及曲線C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A、B兩點(diǎn),求三角形PAB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案