9、已知f(x)為R上的增函數(shù),則滿足f(x2)≤f(1)的實數(shù)x的取值范圍是
{x|-1≤x≤1}
分析:根據(jù)增函數(shù)的意義,函數(shù)值隨著自變量的增大而增大,所以根據(jù)f(x)為R上的增函數(shù),且f(x2)≤f(1),列出關(guān)于x的不等式,求出不等式的解集即可得到實數(shù)x的取值范圍.
解答:解:由f(x)為R上的增函數(shù),且滿足f(x2)≤f(1),
得到x2≤1,解得:-1≤x≤1,
則實數(shù)x的取值范圍是:{x|-1≤x≤1}.
故答案為:{x|-1≤x≤1}
點評:此題考查了其他不等式的解法,理解增函數(shù)的意義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為R上的減函數(shù),則滿足f(
1
x
)>f(1)
的實數(shù)x的取值范圍是( 。
A、(-∞,1)
B、(1,+∞)
C、(-∞,0)∪(0,1)
D、(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為R上的減函數(shù),則滿足f(
1x2
)>f(1)
的實數(shù)x的取值范圍是
(-∞,-1)∪(1,+∞)
(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 f(x)為R上的可導(dǎo)函數(shù),且f(x)<f'(x)和f(x)>0對于x∈R恒成立,則有( 。
A、f(2)<e2-f(0),f(2010)>e2010-f(0)B、f(2)>e2-f(0),f(2010)>e2010-f(0)C、f(2)<e2-f(0),f(2010)<e2010-f(0)D、f(2)<e2-f(0),f(2010)<e2010-f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為R上的偶函數(shù),且當(dāng)x≥0時,f(x)=x2-2x,則
(1)求f(x)在R上的解析式;
(2)寫出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為R上的奇函數(shù),且f(x+1)=-f(x),若存在實數(shù)a、b使得f(a+x)=f(b-x),則a、b應(yīng)滿足關(guān)系
a+b=1+2k(k∈N*
a+b=1+2k(k∈N*

查看答案和解析>>

同步練習(xí)冊答案