A. | ①② | B. | ②④ | C. | ③④ | D. | ①③ |
分析 根據(jù)有界泛函數(shù)的定義,逐個驗證,對于①取x=0,即可說明①不是有界泛函數(shù);對于②采取反證法,f(x)=x2是有界泛函數(shù),則x2≤M|x|,取x=M+1,得到矛盾,因此②不是有界泛函數(shù);對于③利用三角函數(shù)的有界性即可證明③是有界泛函數(shù);對于④求函數(shù)f(x)=$\frac{x}{{x}^{2}+x+1}$的最大值即可證明④是有界泛函數(shù);從而得到選項.
解答 解:函數(shù)f(x)對任意的實數(shù)x,存在常數(shù)M,使得不等式|f(x)|≤M|x|恒成立,那么就稱函數(shù)f(x)為有界泛函數(shù),
∴①取x=0,則|f(x)|=1,|x|=0,故不存在常數(shù)M,使得不等式|f(x)|≤M|x|成立,因此①不是有界泛函數(shù);
②若f(x)=x2是有界泛函數(shù),則x2≤M|x|,取x=M+1,則有(M+1)2>M(M+1),故與假設(shè)矛盾,因此②不是有界泛函數(shù);
③f(x)=(sinx+cosx)x≤$\sqrt{2}$|x|,故③是有界泛函數(shù);
④f(x)=$\frac{x}{{x}^{2}+x+1}$≤$\frac{4}{3}$|x|,故④是有界泛函數(shù);
故選C.
點評 此題是個中檔題.考查函數(shù)恒成立問題,以及三角函數(shù)的有界性和二次函數(shù)配方法求最值等基礎(chǔ)知識,同時考查了學(xué)生的閱讀能力,對題意的理解和轉(zhuǎn)化能力,以及靈活應(yīng)用知識分析解決問題的能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1] | B. | (-∞,1] | C. | [-1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $2\sqrt{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b>a>c | B. | a>b>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 30° | C. | 60°或120° | D. | 30°或150° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com