【題目】設(shè)函數(shù).
(1)若當(dāng)時(shí),取得極值,求的值,并求的單調(diào)區(qū)間.
(2)若存在兩個(gè)極值點(diǎn),求的取值范圍,并證明:.
【答案】(1),的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為. (2),證明見(jiàn)解析
【解析】
(1)求導(dǎo)數(shù),由題意可知為方程的根,求解值,即可.再令導(dǎo)數(shù),,分別求解單調(diào)增區(qū)間與單調(diào)減區(qū)間,即可.
(2)函數(shù)存在兩個(gè)極值點(diǎn),等價(jià)于方程即在上有兩個(gè)不等實(shí)根,則,即可. 變形整理為;若證明不等式,則需證明,由變形為,不妨設(shè),即證,令,則,求函數(shù)的取值范圍,即可證明.
(1)
時(shí),取得極值.
.
解得或
解得
的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(2)
存在兩個(gè)極值點(diǎn)
方程即在上有兩個(gè)不等實(shí)根.
,
.
所證不等式等價(jià)于
即
不妨設(shè),即證
令,
,在上遞增.
成立.
成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且曲線與直線相切于點(diǎn),
(1)求;
(2)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,斜率為k的動(dòng)直線l過(guò)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)若直線l與曲線C有兩個(gè)交點(diǎn),求這兩個(gè)交點(diǎn)的中點(diǎn)P的軌跡關(guān)于參數(shù)k的參數(shù)方程;
(2)在條件(1)下,求曲線的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著互聯(lián)網(wǎng)金融的不斷發(fā)展,很多互聯(lián)網(wǎng)公司推出余額增值服務(wù)產(chǎn)品和活期資金管理服務(wù)產(chǎn)品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財(cái)富通”,京東旗下“京東小金庫(kù)”.為了調(diào)查廣大市民理財(cái)產(chǎn)品的選擇情況,隨機(jī)抽取1100名使用理財(cái)產(chǎn)品的市民,按照使用理財(cái)產(chǎn)品的情況統(tǒng)計(jì)得到如下頻數(shù)分布表:
分組 | 頻數(shù)(單位:名) |
使用“余額寶” | |
使用“財(cái)富通” | |
使用“京東小金庫(kù)” | 40 |
使用其他理財(cái)產(chǎn)品 | 60 |
合計(jì) | 1100 |
已知這1100名市民中,使用“余額寶”的人比使用“財(cái)富通”的人多200名.
(1)求頻數(shù)分布表中,的值;
(2)已知2018年“余額寶”的平均年化收益率為,“財(cái)富通”的平均年化收益率為,“京東小金庫(kù)”的平均年化收益率為,有3名市民,每個(gè)人理財(cái)?shù)馁Y金有10000元,且分別存入“余額寶”“財(cái)富通”“京東小金庫(kù)”,求這3名市民2018年理財(cái)?shù)钠骄昊找媛剩?/span>
(3)若在1100名使用理財(cái)產(chǎn)品的市民中,從使用“余額寶”和使用“財(cái)富通”的市民中按分組用分層抽樣方法共抽取5人,然后從這5人中隨機(jī)選取2人,求“這2人都使用‘財(cái)富通’”的概率.
注:平均年化收益率,也就是我們所熟知的利率,理財(cái)產(chǎn)品“平均年化收益率為”即將100元錢(qián)存入某理財(cái)產(chǎn)品,一年可以獲得3元利息.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)有一塊農(nóng)田,如圖所示,它的邊界由圓O的一段圓弧(P為此圓弧的中點(diǎn))和線段MN構(gòu)成.已知圓O的半徑為40米,點(diǎn)P到MN的距離為50米.現(xiàn)規(guī)劃在此農(nóng)田上修建兩個(gè)溫室大棚,大棚Ⅰ內(nèi)的地塊形狀為矩形ABCD,大棚Ⅱ內(nèi)的地塊形狀為,要求均在線段上,均在圓弧上.設(shè)OC與MN所成的角為.
(1)用分別表示矩形和的面積,并確定的取值范圍;
(2)若大棚Ⅰ內(nèi)種植甲種蔬菜,大棚Ⅱ內(nèi)種植乙種蔬菜,且甲、乙兩種蔬菜的單位面積年產(chǎn)值之比為.求當(dāng)為何值時(shí),能使甲、乙兩種蔬菜的年總產(chǎn)值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x﹣a)cosx﹣sinx,g(x)x3ax2,a∈R
(1)當(dāng)a=1時(shí),求函數(shù)y=f(x)在區(qū)間(0,)上零點(diǎn)的個(gè)數(shù);
(2)令F(x)=f(x)+g(x),試討論函數(shù)y=F(x)極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測(cè)考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績(jī)繪制如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)該市此次檢測(cè)理科數(shù)學(xué)的平均成績(jī);(精確到個(gè)位)
(2)研究發(fā)現(xiàn),本次檢測(cè)的理科數(shù)學(xué)成績(jī)近似服從正態(tài)分布(,約為),按以往的統(tǒng)計(jì)數(shù)據(jù),理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.
(。估計(jì)本次檢測(cè)成績(jī)達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績(jī)大約是多少分?(精確到個(gè)位)
(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說(shuō)明:表示的概率.參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),將曲線向左平移2個(gè)單位長(zhǎng)度得到曲線.
(1)求曲線的普通方程和極坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com