【題目】在正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E為棱CC1上的動點.
(1)若E為棱CC1的中點,求證:A1E⊥平面BDE;
(2)試確定E點的位置使直線A1C與平面BDE所成角的正弦值是 .
【答案】
(1)證明:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,
設(shè)AA1=2AB=2,E為棱CC1的中點,
則A1(1,0,2),E(0,1,1),B(1,1,0),D(0,0,0),
=(﹣1,1,﹣1), =(1,1,0), =(0,1,1),
=﹣1+1=0, =1﹣1=0,
∴A1E⊥DB,A1E⊥DE,
又DB∩DE=D,∴A1E⊥平面BDE
(2)解:C(0,1,0),設(shè)E(0,1,t),
則 =(1,1,0), =(0,1,t), =(﹣1,1,﹣2),
設(shè)平面DBE的法向量 =(a,b,c),
則 ,取a=1,得 =(1,﹣1, ),
∵直線A1C與平面BDE所成角的正弦值是 .
∴|cos< >|= = = ,
解得t=1或t= (舍),
∴E是CC1的中點或CE占CC1的 .
【解析】(1)以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能證明A1E⊥平面BDE.(2)求出平面DBE的法向量,由直線A1C與平面BDE所成角的正弦值是 .利用向量法能確定E點的位置.
【考點精析】本題主要考查了直線與平面垂直的判定和空間角的異面直線所成的角的相關(guān)知識點,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,M,E,F(xiàn),N分別為A1B1 , B1C1 , C1D1 , D1A1的中點,求證:
(1)E,F(xiàn),D,B四點共面;
(2)面AMN∥平面EFDB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)滿足對任意的兩個不相等的正數(shù)x1 , x2 , 下列三個式子:f(x1﹣x2)+f(x2﹣x1)=0,(x1﹣x2)(f(x1)﹣f(x2))<0,f( )> 都恒成立,則f(x)可能是( )
A.f(x)=
B.f(x)=﹣x2
C.f(x)=﹣tanx
D.f(x)=|sinx|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,是奇函數(shù)且在(0,+∞)上單調(diào)遞減的是( )
A.y=x﹣1
B.y=( )x
C.y=x3
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=|x﹣1|,若方程f(x)= 有4個不相等的實根,則實數(shù)a的取值范圍是( )
A.(﹣ ,1)
B.( ,1)
C.( ,1)
D.(﹣1, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮覆蓋面積為24m2 , 三月底測得覆蓋面積為36m2 , 鳳眼蓮覆蓋面積y(單位:m2)與月份x(單位:月)的關(guān)系有兩個函數(shù)模型y=kax(k>0,a>1)與y=px +q(p>0)可供選擇. (Ⅰ)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;
(Ⅱ)求鳳眼蓮覆蓋面積是元旦放入面積10倍以上的最小月份.
(參考數(shù)據(jù):lg2≈0.3010,lg3≈0.4771)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+6﹣2m=0(m∈R).
(1)求該方程表示一條直線的條件;
(2)當m為何實數(shù)時,方程表示的直線斜率不存在?求出這時的直線方程;
(3)已知方程表示的直線l在x軸上的截距為﹣3,求實數(shù)m的值;
(4)若方程表示的直線l的傾斜角是45°,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C. (Ⅰ)證明:AC=AB1;
(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),對x1∈[﹣1,2],x0∈[﹣1,2],使g(x1)=f(x0),則a的取值范圍是( )
A.
B.
C.[3,+∞)
D.(0,3]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com