求出下列函數(shù)的定義域.

(1)                  (2)

 

答案:
解析:

(1)

(2)

 


提示:

使分式和無理式有意義

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
3
x
,
(1)當(dāng)x∈[
1
3
,3]
時(shí),求f(x)的反函數(shù)g(x);
(2)求關(guān)于x的函數(shù)y=[g(x)]2-2ag(x)+3(a≤3)當(dāng)x∈[-1.1]時(shí)的最小值h(a);
(3)我們把同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)稱為“和諧函數(shù)”:
①函數(shù)在整個(gè)定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在函數(shù)的定義域內(nèi)存在區(qū)間[p,q](p<q)使得函數(shù)在區(qū)間[p,q]上的值域?yàn)閇p2,q2].
(Ⅰ)判斷(2)中h(x)是否為“和諧函數(shù)”?若是,求出p,q的值或關(guān)系式;若不是,請(qǐng)說明理由;
(Ⅱ)若關(guān)于x的函數(shù)y=
x2-1
+t(x≥1)是“和諧函數(shù)”,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請(qǐng)研究與函數(shù)f(x)=tanx相關(guān)的下列問題,在表中填寫結(jié)論.
問  題 結(jié)  論(不需要過程) 分?jǐn)?shù)
f(2x-
π
3
)
的定義域
求函數(shù)f(2x-
π
3
)
的周期
寫出f(2x-
π
3
)
的單調(diào)區(qū)間(指明是增還是減)
寫出f(x-
π
2
)
在區(qū)間[-
π
4
, 
π
4
]
范圍內(nèi)的值域
寫出f(2x)圖象的所有對(duì)稱中心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)一模)將奇函數(shù)的圖象關(guān)于原點(diǎn)(即(0,0))對(duì)稱這一性質(zhì)進(jìn)行拓廣,有下面的結(jié)論:
①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對(duì)稱.
②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關(guān)于點(diǎn)(a,f(a))成中心對(duì)稱(注:若a不屬于x的定義域時(shí),則f(a)不存在).
利用上述結(jié)論完成下列各題:
(1)寫出函數(shù)f(x)=tanx的圖象的對(duì)稱中心的坐標(biāo),并加以證明.
(2)已知m(m≠-1)為實(shí)數(shù),試問函數(shù)f(x)=
x+m
x-1
的圖象是否關(guān)于某一點(diǎn)成中心對(duì)稱?若是,求出對(duì)稱中心的坐標(biāo)并說明理由;若不是,請(qǐng)說明理由.
(3)若函數(shù)f(x)=(x-
2
3
)(|x+t|+|x-3|)-4
的圖象關(guān)于點(diǎn)(
2
3
,f(
2
3
))
成中心對(duì)稱,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

求出下列函數(shù)的定義域.

(1);                  (2)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案