已知三棱柱ABC-A1B1C1,底面是邊長為的正三角形,側棱垂直于底面,且該三棱柱的外接球的體積為,則該三棱柱的體積為________.
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試選擇填空限時訓練1練習卷(解析版) 題型:選擇題
已知四棱錐P-ABCD,底面ABCD是邊長為2的菱形,∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,則它的正視圖的面積為( )
A. B. C. D.3
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題5第1課時練習卷(解析版) 題型:解答題
已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分別滿足下列條件的a,b的值.
(1)直線l1過點(-3,-1),并且直線l1與l2垂直;
(2)直線l1與直線l2平行,并且坐標原點到l1,l2的距離相等.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題4第2課時練習卷(解析版) 題型:填空題
如圖,正方體ABCD-A1B1C1D1的棱長為1,點M∈AB1,N∈BC1,且AM=BN≠,有以下四個結論:
①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1是異面直線.其中正確命題的序號是________.(注:把你認為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題4第2課時練習卷(解析版) 題型:選擇題
已知m,n為異面直線,m⊥平面α,n⊥平面β.直線l滿足l⊥m,l⊥n,l?α,l?β,則( )
A.α∥β且l∥α
B.α⊥β且l⊥β
C.α與β相交,且交線垂直于l
D.α與β相交,且交線平行于l
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題4第1課時練習卷(解析版) 題型:選擇題
某幾何體的三視圖如圖所示,則該幾何體的體積為( )
A.16+8π B.8+8π C.16+16π D.8+16π
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題3第3課時練習卷(解析版) 題型:解答題
已知數(shù)列{an}的前n項和為Sn,且Sn=2an-1;數(shù)列{bn}滿足bn-1-bn=bnbn-1(n≥2,n∈N*),b1=1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題3第1課時練習卷(解析版) 題型:填空題
已知函數(shù)f(x)=,對于數(shù)列{an}有an=f(an-1)(n∈N*,且n≥2),如果a1=1,那么a2=________.an=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題2第1課時練習卷(解析版) 題型:解答題
已知a=(5cos x,cos x),b=(sin x,2cos x),設函數(shù)f(x)=a·b+|b|2+.
(1)當∈時,求函數(shù)f(x)的值域;
(2)當x∈時,若f(x)=8,求函數(shù)f的值;
(3)將函數(shù)y=f(x)的圖象向右平移個單位后,再將得到的圖象上各點的縱坐標向下平移5個單位,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的表達式并判斷奇偶性.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com