當(dāng)n∈Z時(shí),給出下列函數(shù)值:

①sin(nπ+);

②sin(2nπ±);

③sin[(2n+1)π-π];

④sin[nπ+(-1)n].

其中與sin相等的是

[  ]

A.①和③

B.②和④

C.③和④

D.①和④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),且對x∈R,恒有f(1+x)=f(1-x).又當(dāng)x∈[0,1]時(shí),f(x)=x.
(1)當(dāng)x∈[-1,0]時(shí),求f(x)的解析式;
(2)求證:函數(shù)y=f(x)(x∈R)是以T=2為周期的周期函數(shù);
(3)解答本小題考生只需從下列三個(gè)問題中選擇一個(gè)寫出結(jié)論即可(無需寫解題步驟).注意:考生若選擇多于一個(gè)問題解答,則按分?jǐn)?shù)最低一個(gè)問題的解答正確與否給分.
①當(dāng)x∈[2n-1,2n](n∈Z)時(shí),求f(x)的解析式.
②當(dāng)x∈[2n-1,2n+1](其中n是給定的正整數(shù))時(shí),若函數(shù)y=f(x)的圖象與函數(shù)y=kx的圖象有且僅有兩個(gè)公共點(diǎn),求實(shí)數(shù)k的取值范圍.
③當(dāng)x∈[0,2n](n是給定的正整數(shù)且n≥3)時(shí),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域是(0,+∞)的函數(shù)f(x)滿足;
(1)對任意x∈(0,+∞),恒有f(3x)=3f(x)成立;
(2)當(dāng)x∈(1,3]時(shí),f(x)=3-x.給出下列結(jié)論:
①對任意m∈Z,有f(3m)=0;
②函數(shù)f(x)的值域?yàn)閇0,+∞);
③存在n∈Z,使得f(3n+1)=0;
④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“?k∈Z,使得(a,b)⊆(3k,3k+1).”
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市黃浦區(qū)、嘉定區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),且對x∈R,恒有f(1+x)=f(1-x).又當(dāng)x∈[0,1]時(shí),f(x)=x.
(1)當(dāng)x∈[-1,0]時(shí),求f(x)的解析式;
(2)求證:函數(shù)y=f(x)(x∈R)是以T=2為周期的周期函數(shù);
(3)解答本小題考生只需從下列三個(gè)問題中選擇一個(gè)寫出結(jié)論即可(無需寫解題步驟).注意:考生若選擇多于一個(gè)問題解答,則按分?jǐn)?shù)最低一個(gè)問題的解答正確與否給分.
①當(dāng)x∈[2n-1,2n](n∈Z)時(shí),求f(x)的解析式.
②當(dāng)x∈[2n-1,2n+1](其中n是給定的正整數(shù))時(shí),若函數(shù)y=f(x)的圖象與函數(shù)y=kx的圖象有且僅有兩個(gè)公共點(diǎn),求實(shí)數(shù)k的取值范圍.
③當(dāng)x∈[0,2n](n是給定的正整數(shù)且n≥3)時(shí),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案