將長為1的小棒隨機拆成3小段,則這3小段能構(gòu)成三角形的概率為(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5
考點:幾何概型
專題:概率與統(tǒng)計
分析:先設(shè)木棒其中兩段的長度分別為x、y,分別表示出木棒隨機地折成3段的x,y的約束條件和3段構(gòu)成三角形的約束條件,再畫出約束條件表示的平面區(qū)域,利用面積測度即可求出構(gòu)成三角形的概率.
解答: 解:設(shè)三段長分別為x,y,1-x-y,
則總樣本空間為
0<x<1
0<y<1
x+y<1

其面積為
1
2
,
能構(gòu)成三角形的事件的空間為
x+y>1-x-y
x+1-x-y>y
y+1-x-y>x
,
其面積為
1
8
,
則所求概率為
1
8
1
2
=
1
4

故選C.
點評:本題主要考查了幾何概型,如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sinx+cosx(x∈R)的圖象向左平移m(m>0)個單位長度后,得到圖象關(guān)于y軸對稱,則m的最小值為( 。
A、
π
4
B、
π
3
C、
π
2
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx).
(1)求函數(shù)f(x)的最大值及相應(yīng)的x值;
(2)試敘述:函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|x>1},B={x|x2-2x>0},則∁U(A∪B)=( 。
A、{x|x≤2}
B、{x|x≥1}
C、{x|0≤x≤1}
D、{x|0≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
34
632
-lg
1
100
+3log32
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,與函數(shù)y=x相同的函數(shù)是( 。
A、y=|x|
B、y=
x2
C、y=(
x
)2
D、y=logaax(a>0,且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(-cosA,sinA),
n
=(cosB,sinB),且
m
n
=
2
2
,其中A,B,C分別為△ABC的三邊a,b,c所對的角.
(1)求角C的大。
(2)已知b=4,△ABC的面積為6,求邊長c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln(x-2)的定義域是( 。
A、(-∞,+∞)
B、(-∞,2)
C、(0,2)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知指數(shù)函數(shù)y=g(x)滿足:g(2)=4,定義域為R的函數(shù)f(x)=
-g(x)+a
2g(x)+b
是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性并用定義加以證明;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案