精英家教網 > 高中數學 > 題目詳情
已知f(x)=(x-1)2+2,g(x)=x2-1,則f[g(x)]( 。
A.在(-2,0)上遞增B.在(0,2)上遞增
C.在(-
2
,0)上遞增
D.在(0,
2
)上遞增
F(x)=f[g(x)]=x4-4x2+6,F′(x)=4x3-8x,
令F′(x)>0,得-
2
<x<0或x>
2
,∴F(x)在(-
2
,0)上遞增.
故選C
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f (x)=sin (x+
π
2
),g (x)=cos (x-
π
2
),則下列命題中正確的是(  )
A、函數y=f(x)•g(x)的最小正周期為2π
B、函數y=f(x)•g(x)是偶函數
C、函數y=f(x)+g(x)的最小值為-1
D、函數y=f(x)+g(x)的一個單調增區(qū)間是[-
4
,
4
]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
1,x<0
2,x≥0
,g(x)=
3f(x-1)-f(x-2)
2

(1)當1≤x<2時,求g(x);
(2)當x∈R時,求g(x)的解析式,并畫出其圖象;
(3)求方程xf[g(x)]=2g[f(x)]的解.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f (x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化簡f (x)的解析式;
(2)若0≤θ≤π,求θ使函數f (x)為偶函數;
(3)在(2)成立的條件下,求滿足f (x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區(qū)間(-∞,0)上的單調性;
(Ⅲ)若數學公式,設g(x)是函數f(x)在區(qū)間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區(qū)間數學公式上的值域為數學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區(qū)間(-∞,0)上的單調性;
(Ⅲ)若,設g(x)是函數f(x)在區(qū)間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案