9.給出下列命題:
①在△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}$>0,則∠A為銳角,
②函數(shù)y=x3在R上既是奇函數(shù)又是增函數(shù),
③若$\overrightarrow a=(λ,2),\overrightarrow b=(-3,-5),且\overrightarrow a與\overrightarrow b的夾角為鈍角,則λ的取值范圍是λ>-\frac{10}{3}$
④函數(shù)y=f(x)的圖象與直線x=a至多有一個交點,
⑤若{an}成等比數(shù)列,Sn是前n項和,則S4,S8-S4,S12-S8成等比數(shù)列;
其中正確命題的序號是①②④.(把你認為正確命題的序號都填上)

分析 根據(jù)向量夾角公式,可判斷①③,根據(jù)冪函數(shù)的圖象和性質(zhì),可判斷②;根據(jù)函數(shù)的定義,可判斷④;根據(jù)等比數(shù)列的定義,可判斷⑤.

解答 解:①在△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}$>0,則cos∠A>0,故∠A為銳角,故正確;
②函數(shù)y=x3在R上既是奇函數(shù)又是增函數(shù),故正確;
③若$\overrightarrow a=(λ,2),\overrightarrow b=(-3,-5),且\overrightarrow a與\overrightarrow b的夾角為鈍角,則λ的取值范圍是λ>-\frac{10}{3}$且λ≠$\frac{6}{5}$,故錯誤;
④函數(shù)y=f(x)的圖象與直線x=a至多有一個交點,故正確;
⑤{an}成等比數(shù)列,且公比q=-1時,S4=S8-S4=S12-S8=0,此時S4,S8-S4,S12-S8不是等比數(shù)列;故錯誤;
故答案為:①②④

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了向量的夾角,函數(shù)的概念,等比數(shù)列的概念,函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知角α的終邊經(jīng)過點(sin15°,-cos15°),則cos2α的值為( 。
A.$\frac{1}{2}+\frac{{\sqrt{3}}}{4}$B.$\frac{1}{2}-\frac{{\sqrt{3}}}{4}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且在[5,6]上是增函數(shù),α,β是銳角三角形的兩個內(nèi)角,則(  )
A.f(sinα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ)D.f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,則目標(biāo)函數(shù)z=$\frac{y}{x+1}$的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)f(x)=ax,g(x)=2lnx,若?x0∈[1,e],f(x0)>g(x0),則( 。
A.a>0B.a≥0C.$0<a≤\frac{2}{e}$D.$0≤a≤\frac{2}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,四棱錐PABCD的底面是邊長為8的正方形,四條側(cè)棱長均為2$\sqrt{17}$.點G,E,F(xiàn),H分別是棱PB,AB,CD,PC上共面的四點,平面GEFH⊥平面ABCD,BC∥平面GEFH.若EB=2,則四邊形GEFH的面積為( 。
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知ω>0,函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)在($\frac{π}{2}$,π)上單調(diào)遞增,則ω的取值范圍是(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)(x∈R)滿足:對于任意實數(shù)x,y,都有f(x+y)=f(x)+f(y)+$\frac{1}{2}$恒成立,且當(dāng)x>0時,f(x)>f(0)恒成立,
(1)盤點f(x)在R上的單調(diào)性,并加以證明;
(2)若函數(shù)F(x)=f(max{-x,2x-x2})+f(-k)+1(其中max$\{a,b\}=\left\{\begin{array}{l}a,a≥b\\ b,a<b\end{array}$)有三個不同的零點x1,x2,x3,求u=(x1+x2+x3)+x1x2x3的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C:x2+y2-2x+4y-4=0.
(1)求過點(4,0)圓的切線方程.
(2)是否存在斜率為1的直線m,使m被圓C截得的弦為AB,且以AB為直徑的圓過原點.若存在,求出直線m的方程; 若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案