如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點.

(1)求證:EF∥平面ABC1D1

(2)求證:EF⊥B1C;

(3)求三棱錐的體積.

答案:
解析:

  解:(1)連結(jié),在中,、分別為,的中點,則

    4分

  2)

  8分

  (3)  10分

  且

  

  ,

  ∴,即  12分

  

 。  14分


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1、DB的中點.
(Ⅰ)求證:EF∥平面ABC1D1;
(Ⅱ)求證:EF⊥B1C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

17、如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,DB的中點
(1)求證:EF∥平面ABC1D1; 
(2)求二面角B1-EF-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在棱長為2的正方體中,E、F分別為DD1、BD的中點.  
(1)求證:EF∥面ABC1D1
(2)求證EF∥BD1
(3)求三棱錐VB1-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點.
(I)求證:EF⊥B1C;
(II)求二面角E-FC-D的正切值;
(III)求三棱錐F-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•虹口區(qū)三模)如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點.
(Ⅰ)求證:CF⊥B1E;
(Ⅱ)求三棱錐VB1-EFC的體積.

查看答案和解析>>

同步練習冊答案