在棱長為1的正方體AC1中,M、N分別在棱A1B,AC上,且A1M=AN=
23
,則MN和平面BB1C1C的位置關(guān)系是
平行
平行
; (請?zhí)顚憽捌叫小,“相交”或“不確定”)
分析:確定
CD
是平面B1BCC1的法向量,
MN
CD
=0,從而可得MN∥平面B1BCC1
解答:解:∵正方體棱長為1,A1M=AN=
2
3

MB
=
2
3
A1B
,
CN
=
2
3
CA
,
MN
=
MB
+
BC
+
CN
=
2
3
A1B
+
BC
+
2
3
CA
=
2
3
B1B
+
1
3
B1C1

又∵
CD
是平面B1BCC1的法向量,
MN
CD
=(
2
3
B1B
+
1
3
B1C1
)•
CD
=0,
MN
CD

∴MN∥平面B1BCC1
故答案為:平行.
點(diǎn)評:本題考查線面平行的判定,考查向量法的運(yùn)用,證明該直線的一個方向向量與該平面的一個法向量垂直是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、如圖所示在棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)P在線段AD1上運(yùn)動,給出以下四個命題:
①異面直線C1P和CB1所成的角為定值;
②二面角P-BC1-D的大小為定值;
③三棱錐D-BPC1的體積為定值;
④直線CP與直線ABC1D1所成的角為定值.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,異面直線AB與CD1之間的距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,M和N分別為A1B1 和BB1的中點(diǎn),那么直線AM與CN所成角的余弦值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)如圖,在棱長為1的正方體A'C中,過BD及B'C'的中點(diǎn)E作截面BEFD交C'D'于F.
(1)求截面BEFD與底面ABCD所成銳二面角的大;
(2)求四棱錐A'-BEFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•武漢模擬)(文科)在棱長為1的正方體ABCD-A′B′C′D′中,AC′為對角線,M、N分別為BB′,B′C′中點(diǎn),P為線段MN中點(diǎn).
(1)求DP和平面ABCD所成的角的正切;
(2)求四面體P-AC′D′的體積.

查看答案和解析>>

同步練習(xí)冊答案