對(duì)于數(shù)列an,(1)已知an是一個(gè)公差不為零的等差數(shù)列,a5=6.
①當(dāng)a3=2時(shí),若自然數(shù)n1,n2,…,nt,…滿足5<n1<n2<…<nt<…,且a3,a5,an1,an2,…,ant,…是等比數(shù)列,試用t表示nt;
②若存在自然數(shù)n1,n2,…,nt,…滿足5<n1<n2<…<nt<…,且a3,a5,an1,an2,…,ant,…構(gòu)成一個(gè)等比數(shù)列.求證:當(dāng)a3是整數(shù)時(shí),a3必為12的正約數(shù).
(2)若數(shù)列an滿足an+1an+3an+1+an+4=0,且a2009小于數(shù)列an中的其他任何一項(xiàng),求a1的取值范圍.
【答案】
分析:(1)①在等差數(shù)列{a
n}中,由a
5=6,a
3=2,求出公差d,然后求出通項(xiàng)a
n,進(jìn)而求出a
nt,由a
3,a
5a
n1,a
n2,…,a
nt…是等比數(shù)列,且可求出公比q,再求出a
nt,兩次求出的a
nt相等,找出n與t的關(guān)系;
②由a
3,a
5a
n1,a
n2,…,a
nt…是等比數(shù)列,由等比中項(xiàng)可得a
3a
n1=a
52,即
.,又由已知已知{a
n}是等差數(shù)列,可求
=
=
,整理可得
,由n為正整數(shù)可知a
3為12的正約數(shù)
(2)由a
n+1a
n+3a
n+1+a
n+4=0,得a
n+1a
n+2a
n+1+2a
n+4=a
n-a
n+1,
即(a
n+1+2)(a
n+2)=(a
n+2)-(a
n+1+2).a(chǎn)
2009小于數(shù)列a
n中的其他任何一項(xiàng),可知a
n不是常數(shù)列,構(gòu)造新的等差數(shù)列
,并借助該數(shù)列的單調(diào)性與反證法求出a
1的范圍.
解答:解:(1)①因?yàn)閍
3=2,a
5=6,所以,公差d=
,
從而a
n=a
5+(n-5)d=2n-4(2分)
又a
3,a
5,a
n1,a
n2,a
nt,是等比數(shù)列,所以公比q=
,所以
a
nt=a
5•3
t=2•3
t+1,t∈N
*.
又a
nt=2n
t-4,所以2n
t-4=2•3
t+1,所以
n
t=3
t+1+2,t∈N
*.(4分)
②因?yàn)閚
1>5時(shí),a
3,a
5,a
n1成等比數(shù)列,所以a
3a
n1=a
52,即
.(6分)
所以當(dāng)n≥3時(shí),
,
所以
,
即
,
所以
.
,解得
.
因?yàn)閚
1是整數(shù),且n
1>5,所以
是正整數(shù),從而整數(shù)a
3必為12的正約數(shù).(8分)
(2)由a
n+1a
n+3a
n+1+a
n+4=0,得a
n+1a
n+2a
n+1+2a
n+4=a
n-a
n+1,
即(a
n+1+2)(a
n+2)=(a
n+2)-(a
n+1+2).(*)(10分)
由(*)知:若存在a
k=-2,則a
k+1=-2;若存在a
k+1=-2,則a
k=-2,所以a
n是常數(shù)列,與“a
2009小于數(shù)列a
n中的其他任何一項(xiàng)”矛盾,因此(a
n+1+2)(a
n+2)≠0.
由(*)式知
,從而數(shù)列
是首項(xiàng)為
,公差為1的等差數(shù)列,即
.(12分)
方法一由于數(shù)列
是遞增數(shù)列,且a
2009小于數(shù)列{a
n}中的其他任何一項(xiàng),即a
2009+2小于數(shù)列{a
n+2}中的其他任何一項(xiàng),所以a
2009+2<0,
且a
2010+2>0,這是因?yàn)槿鬭
2009+2>0,則由
,
得a
2009+2>a
2010+2>0,即a
2009>a
2010,與
“a
2009小于數(shù)列a
n中的其他任何一項(xiàng)”矛盾:
,與“a
2009小于數(shù)列a
n中的其他任何一項(xiàng)”矛盾:因此,
,
即
,
即
,
即-1
綜上,a
1的取值范圍是
方法二
當(dāng)n<1-
時(shí),a
n+2單調(diào)遞增,且a
n+2<0;
當(dāng)n>1-
時(shí),2+a
n單調(diào)遞減,且a
n+2>0.
由于a
2009小于數(shù)列{a
n}中的其他任何一項(xiàng),即a
2009+2小于數(shù)列{a
n+2}中的其他任何一項(xiàng),
所以a
2009+2<0,且a
2010+2>0,
,
即-2009<
,
即-
;
解得-
.
綜上,a
1的取值范圍是
.(16分)
點(diǎn)評(píng):本題是等差數(shù)列與等比數(shù)列的綜合應(yīng)用,解答中要注意數(shù)列遞推公式與數(shù)列單調(diào)性的應(yīng)用,屬于較難試題
科目:高中數(shù)學(xué)
來(lái)源:2012年北京市東城區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版)
題型:解答題
對(duì)于數(shù)列{an} (n=1,2,…,m),令bk為a1,a2,…,ak中的最大值,稱數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列2,1,3,7,5的創(chuàng)新數(shù)列為2,2,3,7,7.定義數(shù)列{Cn}:c1,c2,c3,…,cm是自然數(shù)1,2,3,…,m(m>3)的一個(gè)排列.
(Ⅰ)當(dāng)m=5時(shí),寫(xiě)出創(chuàng)新數(shù)列為3,4,4,5,5的所有數(shù)列{Cn};
(Ⅱ)是否存在數(shù)列{Cn},使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出所有的數(shù)列{Cn},若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>