某單位為了解用電量y度與氣溫x°C之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4填的用電量與當(dāng)天氣溫,并制作了對照表:
氣溫(°C)181211-1
用電量(度)24343765
由表中數(shù)據(jù)得線性回歸方程
?
y
=-2x+a,預(yù)測當(dāng)氣溫-3°C時(shí),用電量的度數(shù)約為
 
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點(diǎn),根據(jù)樣本中心點(diǎn)在線性回歸直線上,利用待定系數(shù)法做出a的值,可得線性回歸方程,根據(jù)所給的x的值,代入線性回歸方程,預(yù)報(bào)要銷售的件數(shù).
解答: 解:由表格得(
.
x
,
.
y
)為:(10,40),
代入
?
y
=-2x+a,∴40=10×(-2)+a,
解得:a=60,
?
y
=-2x+60,
當(dāng)x=-3時(shí),
?
y
=-2×(-3)+60=66.
故答案為:66.
點(diǎn)評:本題考查線性回歸方程,考查最小二乘法的應(yīng)用,考查利用線性回歸方程預(yù)報(bào)變量的值,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx,a∈R.
(Ⅰ)若曲線y=f(x)與曲線g(x)=
x
在交點(diǎn)處有共同的切線,求a的值;
(Ⅱ)若對任意x∈[1,e],都有f(x)≥-x2+(a+2)x恒成立,求a的取值范圍;
(Ⅲ)在(I)的條件下,求證:xf(x)>
xe1-x
2
-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P,A,B,C,D是球O表面上的點(diǎn),PA⊥平面ABCD,四邊形ABCD是邊長為2
2
的正方形,若PA=2
7
,則三棱錐B-AOP的體積VB-AOP=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:f(m+n)=f(m)f(n),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
 的值等于(  )
A、36B、24C、18D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)Q是拋物線C上一點(diǎn)且Q的縱坐標(biāo)為4,點(diǎn)Q到焦點(diǎn)F的距離為5.
(Ⅰ)求拋物線方程;
(Ⅱ)已知p<8,過點(diǎn)M(5,-2)任作一條直線與拋物線C相交于點(diǎn)A,B,試問在拋物線C上是否存在點(diǎn)E,使得EA⊥EB總成立?若存在,求出點(diǎn)E的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+4)=f(x)+2f(2),若函數(shù)y=f(x-1)的圖象關(guān)于直線x=1對稱,且f(3)=2,則f(2015)等于( 。
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某城市出租車收費(fèi)標(biāo)準(zhǔn)如下:①起步價(jià)3km(含3km)為10元;②超過3km以外的路程按2元/km收費(fèi);③不足1km按1km計(jì)費(fèi).
(1)試寫出收費(fèi)y元與x(km)(0<x≤5)之間的函數(shù)關(guān)系式;
(2)若某人乘出租車花了24元錢,求此人乘車?yán)锍蘹km的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,兩塊直角三角板拼在一起,已知∠ABC=45°,∠BCD=60°.若記
AB
=
a
,
AC
=
b
,試用
a
,
b
表示向量
CD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+
1
3
an=1(n∈N+).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log4(1-Sn+1)(n∈N+),Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求使Tn
503
1007
成立的最小的正整數(shù)n的值.

查看答案和解析>>

同步練習(xí)冊答案