已知函數(shù)f(x)=xlnx.
(1)設(shè)函數(shù)g(x)=f(x)-a(x-1),其中a∈R,求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.
分析:(1)把函數(shù)f(x)=xlnx代入g(x)=f(x)-a(x-1),求導(dǎo)后利用導(dǎo)函數(shù)的正負(fù)求解函數(shù)g(x)的單調(diào)區(qū)間;
(2)設(shè)出切點(diǎn),求出函數(shù)在切點(diǎn)處的導(dǎo)數(shù),利用直線方程的點(diǎn)斜式寫出直線方程,把點(diǎn)(0,-1)代入求切點(diǎn)的橫坐標(biāo),則切線方程可求.
解答:解:(1)∵f(x)=xlnx,∴g(x)=f(x)-a(x-1)=xlnx-a(x-1),
則g′(x)=lnx+1-a,
由g′(x)<0,得lnx+1-a<0,解得:0<x<ea-1;
由g′(x)>0,得lnx+1-a>0,解得:x>ea-1
所以g(x)在(0,ea-1)上單調(diào)遞減,在(ea-1,+∞)上單調(diào)遞增.
(2)設(shè)切點(diǎn)坐標(biāo)為(x0,y0),則y0=x0lnx0,切線的斜率為lnx0+1.
所以切線l的方程為y-x0lnx0=(lnx0+1)(x-x0),
又切線l過(guò)點(diǎn)(0,-1),所以有-1-x0lnx0=(lnx0+1)(0-x0),
即-1-x0lnx0=-x0lnx0-x0,
解得x0=1,y0=0,
所以直線l的方程為y=x-1.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了函數(shù)導(dǎo)函數(shù)的符號(hào)和函數(shù)單調(diào)性之間的關(guān)系,考查了曲線上某點(diǎn)處切線方程的求法,解答此類問(wèn)題時(shí)要注意題目的問(wèn)法,是在某點(diǎn)處的切線方程還是過(guò)某點(diǎn)處的切線方程,以免解答出錯(cuò),此題是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案