20.已知函數(shù)f(x)是定義在[-5,5]上的偶函數(shù),且在區(qū)間[0,5]是減函數(shù),若f(2a+3)<f(a),則實(shí)數(shù)a的取值范圍是[-4,-3)∪(-1,1].

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行等價轉(zhuǎn)化即可.

解答 解:∵f(x)是定義在[-5,5]上的偶函數(shù),且在區(qū)間[0,5]是減函數(shù),
∴不等式f(2a+3)<f(a)等價為f(|2a+3|)<f(|a|),
即|2a+3|>|a|,
即$\left\{\begin{array}{l}{-5≤2a+3≤5}\\{-5≤a≤5}\\{(2a+3)^{2}>{a}^{2}}\end{array}\right.$,得$\left\{\begin{array}{l}{-4≤a≤1}\\{-5≤a≤5}\\{a>-1或a<-3}\end{array}\right.$,即-4≤a<-3或-1<a≤1,
故答案為:[-4,-3)∪(-1,1].

點(diǎn)評 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.學(xué)校里開運(yùn)動會,設(shè)全集U為所有參加運(yùn)動會的學(xué)生,
A={x|x是參加一百米跑的學(xué)生},
B={x|x是參二百米跑的學(xué)生},
C={x|x是參加四百米跑的學(xué)生},
學(xué)校規(guī)定,每個參加上述比賽的同學(xué)最多只能參加兩項(xiàng),下列集合運(yùn)算能說明這項(xiàng)規(guī)定的是      ( 。
A.(A∪B)∪C=UB.(A∪B)∩C=∅C.(A∩B)∩C=∅D.(A∩B)∪C=C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“若a>1且b>1,則a+b>2且ab>1”的逆否命題是(  )
A.若a+b≤2且ab≤1,則a≤1且b≤1B.若a+b≤2且ab≤1,則a≤1或b≤1
C.若a+b≤2或ab≤1,則a≤1且b≤1D.若a+b≤2或ab≤1,則a≤1或b≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若復(fù)數(shù)Z滿足Z=i(2+Z)(i為虛數(shù)單位),則Z=(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}滿足a1=2016,a2=1,an+1=an+an+2,則前2017項(xiàng)和S2017=( 。
A.2016B.1C.0D.-2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow a$=(2,x),向量$\overrightarrow b$=(-1,2),若$\overrightarrow a$⊥$\overrightarrow b$,則實(shí)數(shù)x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若圓x2+y2=m的半徑為$\sqrt{2}$,則m為( 。
A.0或2B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某樣本數(shù)據(jù)的莖葉圖如圖所示,若該組數(shù)據(jù)的中位數(shù)為85,平均數(shù)為85.5,則x+y=( 。
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四棱錐P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=$2\sqrt{2}$.
(1)求證:BD⊥平面PAC;
(2)求點(diǎn)C到平面PBD的距離.
(3)求二面角P-CD-B余弦值的大。

查看答案和解析>>

同步練習(xí)冊答案