【題目】圓C過點M(5,2),N(3,2)且圓心在x軸上,點A為圓C上的點,O為坐標原點.
(1)求圓C的方程;
(2)連接OA,延長OA到P,使得|OA|=|AP|,求點P的軌跡方程.

【答案】
(1)解:由已知得MN的垂直平分線為x=4,所以圓心坐標為C(4,0),則半徑r=

所以圓的方程為(x﹣4)2+y2=5


(2)解:連接OA,延長OA到P,使得|OA|=|AP|,則點A為點P與點O的中點

設P(x,y),A(x0,y0),則有 ,代入方程

化簡得點P的軌跡方程為(x﹣8)2+y2=20


【解析】(1)由已知得MN的垂直平分線為x=4,所以圓心坐標為C(4,0),則半徑r= ,可得圓的方程;(2)連接OA,延長OA到P,使得|OA|=|AP|,則點A為點P與點O的中點,利用代入法求點P的軌跡方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)所學知識完成題目:
(1)求函數(shù)f(x)=2x+4 的值域;
(2)求函數(shù)f(x)= 的值域.
(3)函數(shù)f(x)=x2﹣2x﹣3,x∈(﹣1,4]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求函數(shù)y= 的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的三邊長分別為a、b、c,△ABC的面積為S,內切圓半徑為r,則r= ;類比這個結論可知:四面體P﹣ABC的四個面的面積分別為S1、S2、S3、S4 , 內切球的半徑為r,四面體P﹣ABC的體積為V,則r=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=ax3﹣bx+4,當x=2時,函數(shù)f(x)有極值為 , (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x)=k有3個解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= +bx(其中a,b為常數(shù))的圖象經過(1,3)、(2,3)兩點.
(I)求a,b的值,判斷并證明函數(shù)f(x)的奇偶性;
(II)證明:函數(shù)f(x)在區(qū)間[ ,+∞)上單調遞增.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:方程 表示焦點在y軸上的雙曲線,命題q:點(m,1)在橢圓 的內部;命題r:函數(shù)f(m)=log2(m﹣a)的定義域;
(1)若p∧q為真命題,求實數(shù)m的取值范圍;
(2)若p是r的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側棱與底面邊長都相等,A1在底面ABC內的射影為△ABC的中心,則AB1與底面ABC所成角的正弦值等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1的棱長為1,以頂點A為球心, 為半徑作一個球,則球面與正方體的表面相交所得到的曲線的長等于

查看答案和解析>>

同步練習冊答案