如圖,P為△ABC所在平面外一點(diǎn),PA⊥平面ABC,∠ABC=90°,AEPB交于EAFPC交于F.求證:

(1)BC⊥平面PAB;

(2)AE⊥平面PBC;

(3)PC⊥平面AEF

答案:略
解析:

(1)證明 ∵PA⊥平面ABC平面ABC,∴PABC

ABBC,ABPA=A,∴AE⊥平面PAB;

(2)證明 ∵BC⊥平面PAB,平面PAB,∴BCAE

PBAE,BCPB=B,∴AE⊥平面PBC;

(3)證明 ∵AE⊥平面PBC,平面PBC,∴AEPC,

AFPCAEAF=A,∴PC平面AEF


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD為直角梯形,∠DAB=∠ABC=90°,AB=BC=1,AD=2,PA⊥平面ABCD,PA=1.
(1)求點(diǎn)P到CD的距離;
(2)求證:平面PAC⊥平面PCD;
(3)求平面PAB與平面PCD所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002年高中會(huì)考數(shù)學(xué)必備一本全2002年1月第1版 題型:044

如圖,P為直角三角形ABC所在平面α外一點(diǎn),∠C=,PC=24,P到兩條直角邊的距離都是6,求:

  

(1)P到平面α的距離;

(2)PC與平面α所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)P為斜三棱柱ABC—A1B1C1的側(cè)棱BB1上一點(diǎn),PMBB1交AA1于點(diǎn)M,PNBB1交CC1于點(diǎn)N.

       (1)求證:CC1MN;

       (2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF·EF·cos∠DFE.拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并予以證明.

      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)P為斜三棱柱ABC—A1B1C1的側(cè)棱BB1上一點(diǎn),PM⊥B1B交AA1于點(diǎn)M,PN⊥BB1交CC1于點(diǎn)N.

(1)求證:CC1⊥MN;

(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF·EFcos∠DFE.拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20.如圖,點(diǎn)P為斜三棱柱ABCA1B1C1的側(cè)棱BB1上一點(diǎn),PMBB1AA1于點(diǎn)M,PNBB1CC1于點(diǎn)N.

    (1)求證:CC1MN

    (2)在任意△DEF中有余弦定理:

     DE2DF2EF2-2DF·EFcosDFE.

    拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面

積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并予以證明.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案