已知a∈R,函數(shù)f(x)=
ax
+lnx-1
,g(x)=(lnx-1)ex+x(其中e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實(shí)數(shù)x0∈(0,e],使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在,求出x0的值;若不存在,請(qǐng)說(shuō)明理由.
分析:(1)討論滿足f′(x)=0的點(diǎn)附近的導(dǎo)數(shù)的符號(hào)的變化情況,來(lái)確定極值,將f(x)的各極值與其端點(diǎn)的函數(shù)值比較,其中最小的一個(gè)就是最小值;
(2)將曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直轉(zhuǎn)化成方程g'(x0)=0有實(shí)數(shù)解,只需研究導(dǎo)函數(shù)的最小值即可.
解答:解:(1)∵f(x)=
a
x
+lnx-1
,
f′(x)=-
a
x2
+
1
x
=
x-a
x2

令f'(x)=0,得x=a.
①若a≤0,則f'(x)>0,f(x)在區(qū)間(0,e]上單調(diào)遞增,此時(shí)函數(shù)f(x)無(wú)最小值.
②若0<a<e,當(dāng)x∈(0,a)時(shí),f'(x)<0,函數(shù)f(x)在區(qū)間(0,a)上單調(diào)遞減,
當(dāng)x∈(a,e]時(shí),f'(x)>0,函數(shù)f(x)在區(qū)間(a,e]上單調(diào)遞增,
所以當(dāng)x=a時(shí),函數(shù)f(x)取得最小值lna
③若a≥e,則f'(x)≤0,函數(shù)f(x)在區(qū)間(0,e]上單調(diào)遞減,
所以當(dāng)x=e時(shí),函數(shù)f(x)取得最小值
a
e

.綜上可知,當(dāng)a≤0時(shí),函數(shù)f(x)在區(qū)間(0,e]上無(wú)最小值;
當(dāng)0<a<e時(shí),函數(shù)f(x)在區(qū)間(0,e]上的最小值為lna;
當(dāng)a≥e時(shí),函數(shù)f(x)在區(qū)間(0,e]上的最小值為
a
e

(2)∵g(x)=(lnx-1)ex+x,x∈(0,e],
∴g'(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=
ex
x
+(lnx-1)ex+1=(
1
x
+lnx-1)ex+1

由(1)可知,當(dāng)a=1時(shí),f(x)=
1
x
+lnx-1

此時(shí)f(x)在區(qū)間(0,e]上的最小值為ln1=0,即
1
x
+lnx-1≥0
.(10分)
當(dāng)x0∈(0,e],ex0>0,
1
x0
+lnx0-1≥0
,
g′(x0)=(
1
x0
+lnx0-1)ex0+1≥1>0

曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直等價(jià)于方程g'(x0)=0有實(shí)數(shù)解.(13分)
而g'(x0)>0,即方程g'(x0)=0無(wú)實(shí)數(shù)解.、故不存在x0∈(0,e],使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,以及利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函數(shù)g(x)=f′(x)是偶函數(shù),求f(x)的極大值和極小值;
(Ⅱ)如果函數(shù)f(x)是(-∞,?+∞)上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=ln(x+1)-x2+ax+2.
(1)若函數(shù)f(x)在[1,+∞)上為減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令a=-1,b∈R,已知函數(shù)g(x)=b+2bx-x2.若對(duì)任意x1∈(-1,+∞),總存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e為自然對(duì)數(shù)的底).
(1)當(dāng)a>0時(shí),求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實(shí)數(shù)x0∈(0,e],使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在求出x0的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•太原一模)已知a∈R,函數(shù) f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)是偶函數(shù),則曲線y=f(x)在原點(diǎn)處的切線方程為
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江)已知a∈R,函數(shù)f(x)=x3-3x2+3ax-3a+3.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)x∈[0,2]時(shí),求|f(x)|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案