7.已知函數(shù)f(x)=(2cos2x-1)sin2x+$\frac{1}{2}$cos4x,若α∈($\frac{π}{2}$,π)且f(α)=$\frac{{\sqrt{2}}}{2}$,則α的值是( 。
A.$\frac{5π}{8}$B.$\frac{11π}{16}$C.$\frac{9π}{16}$D.$\frac{7π}{8}$

分析 利用二倍角公式和和角公式化簡(jiǎn)f(x),根據(jù)f(α)=$\frac{{\sqrt{2}}}{2}$得出α的表達(dá)式即可得出α的值.

解答 解:f(x)=cos2xsin2x+$\frac{1}{2}$cos4x=$\frac{1}{2}$sin4x+$\frac{1}{2}$cos4x=$\frac{\sqrt{2}}{2}$sin(4x+$\frac{π}{4}$),
∴f(α)=$\frac{\sqrt{2}}{2}$sin(4α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
∴4α+$\frac{π}{4}$=$\frac{π}{2}$+2kπ,即α=$\frac{π}{16}$+$\frac{kπ}{2}$,k∈Z.
∵α∈($\frac{π}{2}$,π),
∴α=$\frac{π}{16}+\frac{π}{2}$=$\frac{9π}{16}$.
故選C.

點(diǎn)評(píng) 本題考查了三角恒等變換,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x),g(x)滿足關(guān)系$g(x)=f(x)•f({x+\frac{π}{2}})$,
(1)設(shè)f(x)=cosx+sinx,求g(x)的解析式;
(2)當(dāng)f(x)=|sinx|+cosx時(shí),存在x1,x2∈R,對(duì)任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知甲、乙兩組數(shù)據(jù)的莖葉圖如圖所示,若它們的中位數(shù)相同,則甲組數(shù)據(jù)的平均數(shù)為32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(x)=ax2+bx,其中-1≤a<0,b>0,則“存在x∈[0,1],|f(x)|>1”是“a+b>1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)y=sinx的圖象與函數(shù)y=x圖象的交點(diǎn)的個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知棱長(zhǎng)為l的正方體ABCD-A1B1C1D1中,E,F(xiàn),M分別是AB、AD、AA1的中點(diǎn),又P、Q分別在線段A1B1,A1D1上,且A1P=A1Q=x,0<x<1,設(shè)面MEF∩面MPQ=l,則下列結(jié)論中不成立的是(  )
A.l∥面ABCDB.l⊥AC
C.面MEF與面MPQ垂直D.當(dāng)x變化時(shí),l是定直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知三棱錐A-BCD四個(gè)頂點(diǎn)都在半徑為3的球面上,且BC過(guò)球心,當(dāng)三棱錐A-BCD的體積最大時(shí),則三棱錐A-BCD的表面積為(  )
A.$18+6\sqrt{3}$B.$18+8\sqrt{3}$C.$18+9\sqrt{3}$D.$18+10\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.等腰三角形ABC繞底邊上的中線AD所在的直線旋轉(zhuǎn)所得的幾何體是( 。
A.圓臺(tái)B.圓錐C.圓柱D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=x3-3x+2在區(qū)間(a,-a2+2a+4)上有極小值,則實(shí)數(shù)a的取值范圍是(-1,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案