已知函數(shù)f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.
(Ⅰ)當(dāng)t=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)當(dāng)t≠0時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅲ)證明:對任意的t∈(0,+∞),f(x)在區(qū)間(0,1)內(nèi)均存在零點(diǎn).
【答案】分析:(I)當(dāng)t=1時(shí),求出函數(shù)f(x),利用導(dǎo)數(shù)的幾何意義求出x=0處的切線的斜率,利用點(diǎn)斜式求出切線方程;
(II)根據(jù)f'(0)=0,解得x=-t或x=,討論t的正負(fù),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0求出單調(diào)區(qū)間即可;
(III)根據(jù)函數(shù)的單調(diào)性分兩種情況討論,當(dāng)≥1與當(dāng)0<<1時(shí),研究函數(shù)的單調(diào)性,然后根據(jù)區(qū)間端點(diǎn)的符號進(jìn)行判定對任意t∈(0,2),f(x)在區(qū)間(0,1)內(nèi)均存在零點(diǎn)從而得到結(jié)論.
解答:解:(I)當(dāng)t=1時(shí),f(x)=4x3+3x2-6x,f(0)=0
f'(x)=12x2+6x-6,f'(0)=-6,所以曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=-6x.
(II)解:f'(x)=12x2+6tx-6t2,f'(0)=0,解得x=-t或x=
∵t≠0,以下分兩種情況討論:
(1)若t<0,則<-t,∴f(x)的單調(diào)增區(qū)間是(-∞,),(-t,+∞);f(x)的單調(diào)減區(qū)間是(,-t)
(2)若t>0,則>-t,∴f(x)的單調(diào)增區(qū)間是(-∞,-t),(,+∞);f(x)的單調(diào)減區(qū)間是(-t,
(III)證明:由(II)可知,當(dāng)t>0時(shí),f(x)在(0,)內(nèi)單調(diào)遞減,在(,+∞)內(nèi)單調(diào)遞增,以下分兩種情況討論:
(1)當(dāng)≥1,即t≥2時(shí),f(x)在(0,1)內(nèi)單調(diào)遞減.
f(0)=t-1>0,f(1)=-6t2+4t+3≤-13<0
所以對于任意t∈[2,+∞),f(x)在區(qū)間(0,1)內(nèi)均存在零點(diǎn).
(2)當(dāng)0<<1,即0<t<2時(shí),f(x)在(0,)內(nèi)單調(diào)遞減,在(,1)內(nèi)單調(diào)遞增
若t∈(0,1],f()=+t-1≤<0,
f(1)=)=-6t2+4t+3≥-2t+3>0
所以f(x)在(,1)內(nèi)存在零點(diǎn).
若t∈(1,2),f()=+t-1<+1<0,
f(0)=t-1>0∴f(x)在(0,)內(nèi)存在零點(diǎn).
所以,對任意t∈(0,2),f(x)在區(qū)間(0,1)內(nèi)均存在零點(diǎn).
綜上,對于任意t∈(0,+∞),f(x)在區(qū)間(0,1)內(nèi)均存在零點(diǎn).
點(diǎn)評:本題主要考查了導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、曲線的切線方程、函數(shù)零點(diǎn)、解不等式等基礎(chǔ)知識,考查了計(jì)算能力和分類討論的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
4+
1
x2
,數(shù)列{an},點(diǎn)Pn(an,-
1
an+1
)在曲線y=f(x)上(n∈N+),且a1=1,an>0.
( I)求數(shù)列{an}的通項(xiàng)公式;
( II)數(shù)列{bn}的前n項(xiàng)和為Tn且滿足bn=an2an+12,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
4-x2
在區(qū)間M上的反函數(shù)是其本身,則M可以是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4+ax-1(a>0且a≠1)的圖象恒過定點(diǎn)P,則P點(diǎn)的坐標(biāo)是
(1,5)
(1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4-x
的定義域?yàn)锳,B={x|2x+3≥1}.
(1)求A∩B;
(2)設(shè)全集U=R,求?U(A∩B);
(3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(4-
a
2
)x+4,  x≤6
ax-5,     x>6
(a>0,a≠1),數(shù)列{an}滿足an=f(n)(n∈N*),且{an}是單調(diào)遞增數(shù)列,則實(shí)數(shù)a的取值范圍(  )

查看答案和解析>>

同步練習(xí)冊答案