分析 (1)由a3=5,S3=9聯(lián)立方程求出數(shù)列的首項(xiàng)和公差,然后求數(shù)列{an}的通項(xiàng)公式;
(2)根據(jù)T3=13,b3=a5,求出公比和首項(xiàng),求出Tn即可;
(3)求出an和bn,從而求出Sn即可.
解答 解:(1)$\left\{\begin{array}{l}{a_3}={a_1}+2d=5\\{S_3}=3{a_1}+\frac{3×2}{2}d=9\end{array}\right.$解得$\left\{\begin{array}{l}{a_1}=1\\ d=2\end{array}\right.$,
∴an=a1+(n-1)d=2n-1.
(2)由上可得,b3=a5=9,T3=13,所以公比q=3,
從而,b1=1,
所以${T_n}=\frac{{{b_1}(1-{q^n})}}{1-q}$=$\frac{{1×(1-{3^n})}}{1-3}=\frac{1}{2}({3^n}-1)$.
(3)由(1)知,an=2n-1.
∴${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴${S_n}={b_1}+{b_2}+…+{b_n}=\frac{1}{2}[{(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})}]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.
點(diǎn)評(píng) 本題主要考查等比數(shù)列和等差數(shù)列的通項(xiàng)公式以及前n項(xiàng)和公式,要求熟練掌握相應(yīng)的公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\frac{3}{4}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{15}{16}$ | B. | -$\frac{7}{16}$ | C. | $\frac{7}{16}$ | D. | $\frac{15}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不存在 | B. | 不能確定 | C. | 一個(gè) | D. | 兩個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com