在△ABC中,若a=2,c=4,B=60°,則b等于( 。
A、2
3
B、12
C、2
7
D、28
考點:正弦定理
專題:計算題,解三角形
分析:利用余弦定理,把已知的a,c和cosB代入即可求得答案.
解答: 解:∵在△ABC中,a=2,c=4,B=60°,
∴由余弦定理得:b=
a2+b2-2abcosB
=
4+16-2×2×4×
1
2
=2
3
,
故選:A.
點評:本題主要考查了余弦定理的應(yīng)用.余弦定理是解三角形中的一個重要定理,可應(yīng)用于以下兩種需求:當(dāng)已知三角形的兩邊及其夾角,可由余弦定理得出已知角的對邊.當(dāng)已知三角形的三邊,可以由余弦定理得到三角形的三個內(nèi)角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f0(x)=xex,f1(x)=f0′(x),f2(x)=f1′(x),…fn(x)=fn-1′(x)(n∈N*)則f2014′(0)=( 。
A、2013B、2014
C、2015D、2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1:ax-y+b=0,l2:bx-y+a=0(a、b≠0,a≠b)在同一坐標(biāo)系中的圖形大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y=0與圓(x-2)2+y2=4相交所得線段的長度為(  )
A、
2
2
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則這個幾何體的表面積為(  )
A、7+
5
B、9+
5
C、7+
10
D、9+
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,若acosB+bcosA=csinC且a=b,則角B等于( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1-a
a-x
(a∈R且x≠a).
(1)證明:對定義域內(nèi)所有x,f(x)+2+f(2a-x)恒為定值;
(2)設(shè)函數(shù)g(x)=x2+|(x-a)f(x)|,求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,已知∠A=
π
3
,BC=4
3
,D為AB上一點.
(Ⅰ)若CD=2,S△BDC=2
3
,求BD長;
(Ⅱ)若AC=AD,求△BCD周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表是某市從3月份中隨機抽取的10天空氣質(zhì)量指數(shù)(AQI)和“PM2.5”(直徑小于等于2.5微米的顆粒物)24小時平均濃度的數(shù)據(jù),空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量優(yōu)良.
日期編號 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
空氣質(zhì)量指數(shù)(AQI) 179 40 98 124 29 133 241 424 95 89
“PM2.5”24小時平均濃度(ug/m3 135 5 80 94 80 100 190 387 70 66
(1)根據(jù)上表數(shù)據(jù),估計該市當(dāng)月某日空氣質(zhì)量優(yōu)良的概率;
(2)在上表數(shù)據(jù)中,在表示空氣質(zhì)量優(yōu)良的日期中,隨機抽取兩個對其當(dāng)天的數(shù)據(jù)作進一步的分析,設(shè)事件M為“抽取的兩個日期中,當(dāng)天“PM2.5”的24小時平均濃度不超過75ug/m3”,求事件M發(fā)生的概率;
(3)在上表數(shù)據(jù)中,在表示空氣質(zhì)量優(yōu)良的日期中,隨機抽取3天,記ξ為“PM2.5”24小時平均濃度不超過75ug/m3的天數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案