已知函數(shù)F(x)=
1
3
ax3+bx2+cx(a≠0)
,F(xiàn)'(-1)=0.
(1)若F(x)在x=1處取得極小值-2,求函數(shù)F(x)的單調(diào)區(qū)間;
(2)令f(x)=F'(x),若f′(x)>0的解集為A,且滿足A∪(0,1)=(0,+∞),求
c
a
的取值范圍.
分析:(1)由已知中函數(shù)F(x)=
1
3
ax3+bx2+cx(a≠0)
,F(xiàn)'(-1)=0,且F(x)在x=1處取得極小值-2,我們易構(gòu)造出一個(gè)關(guān)于a,b,c的三元一次方程組,解方程組,求出a,b,c的值,即可得到導(dǎo)函數(shù)的解析式,分析導(dǎo)函數(shù)的符號(hào),即可求出函數(shù)F(x)的單調(diào)區(qū)間;
(2)由f(x)=F'(x),我們易求出f'(x)的解析式,若f'(x)>0的解集為A,且滿足A∪(0,1)=(0,+∞),則0≤
-a-c
2a
<1
,解不等式即可得到
c
a
的取值范圍.
解答:解:(1)因F'(x)=ax2+2bx+c由題意得:
F′(-1)=0
F′(1)=0
F(1)=-2
a-2b+c=0
a+2b+c=0
1
3
a+b+c=-2
解得
a=3
b=0
c=-3

所以F'(x)=3x2-3,
由F'(x)>0得x<-1或x>1,故增區(qū)間為(-∞,-1),(1,+∞)
由F'(x)<0,得-1<x<1,故減區(qū)間為(-1,1)(-1、1)
(2)由f(x)=F'(x),
得f'(x)=2ax+a+c,
由f'(x)>0,
得2ax+a+c>0
又A∪(0,1)=(0,+∞),
故a>0且0≤
-a-c
2a
<1
,
-3<
c
a
≤-1
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用函數(shù)研究函數(shù)的極值,其中根據(jù)已知函數(shù)的解析式,求出函數(shù)的導(dǎo)函數(shù)是解答此類問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個(gè)函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時(shí)滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案