【題目】若無窮數(shù)列滿足:恒等于常數(shù),則稱具有局部等差數(shù)列.

1)若具有局部等差數(shù)列,且,求;

2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,,判斷是否具有局部等差數(shù)列,并說明理由;

3)設(shè)既具有局部等差數(shù)列,又具有局部等差數(shù)列,求證具有局部等差數(shù)列.

【答案】見解析

【解析】解:(1)由題意得, ,

于是,又因?yàn)?/span>,代入解得………………3

(2)的公差為的公比為,

所以,

,當(dāng)時(shí)不恒為常數(shù),

所以不具有局部等差數(shù)列………………8

(3)由題意得:當(dāng)時(shí)等差數(shù)列 也成等差數(shù)列,

所以當(dāng)時(shí)

于是當(dāng)時(shí)等差數(shù)列,因此),

從而當(dāng)時(shí)等差數(shù)列,公差為

由當(dāng)時(shí),

所以

因此當(dāng)時(shí)等差數(shù)列,公差為 ,具有局部等差數(shù)列.………………16

【命題意圖】本題考查等差數(shù)列、等比數(shù)列的通項(xiàng)公式,數(shù)列單調(diào)性,反證法等基礎(chǔ)知識(shí),意在考查邏輯思維及推理能力、運(yùn)算求解能力、分析問題解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù),).

(Ⅰ)當(dāng)時(shí),若曲線上存在兩點(diǎn)關(guān)于點(diǎn)成中心對(duì)稱,求直線的參數(shù)方程;

(Ⅱ)在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,極坐標(biāo)方程為的直線與曲線相交于兩點(diǎn),若,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,設(shè)是橢圓的兩個(gè)短軸端點(diǎn),是橢圓的長軸左端點(diǎn).

(Ⅰ)當(dāng)時(shí),設(shè)點(diǎn),直線交橢圓,且直線的斜率分別為,求的值;

(Ⅱ)當(dāng)時(shí),若經(jīng)過的直線與橢圓交于兩點(diǎn),O為坐標(biāo)原點(diǎn),求的面積之差的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若不等式對(duì)恒成立,求的值;

(2)若內(nèi)有兩個(gè)極值點(diǎn),求負(fù)數(shù)的取值范圍;

(3)已知若對(duì)任意實(shí)數(shù),總存在實(shí)數(shù)使得成立,求正實(shí)數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是正項(xiàng)數(shù)列的前項(xiàng)和,滿足,.

)求數(shù)列通項(xiàng)公式

)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C對(duì)應(yīng)邊分別是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面積;
(2)求AB邊上的中線長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), )為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為.

(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體中, , , 分別是棱, , , 的中點(diǎn),點(diǎn), 分別在棱, 上移動(dòng),且.

(1)當(dāng)時(shí),證明:直線平面;

(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案