平面上有兩點,點在圓周上,求使取最小值時點的坐標。

解析:在Δ中有,即當最小時,取最小值,而,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點P是圓M:x2+(y+m)2=8(m>0,m≠
2
)上一動點,點N(0,m)是圓M所在平面內(nèi)一定點,線段NP的垂直平分線l與直線MP相交于點Q.
(Ⅰ)當P在圓M上運動時,記動點Q的軌跡為曲線Γ,判斷曲線Γ為何種曲線,并求出它的標準方程;
(Ⅱ)過原點斜率為k的直線交曲線Γ于A,B兩點,其中A在第一象限,且它在y軸上的射影為點C,直線BC交曲線Γ于另一點D,記直線AD的斜率為k′.是否存在m,使得對任意的k>0,都有|k•k′|=1?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題設(shè)有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分
(1)選修4-2:矩陣與變換
變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M′(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
(2)選修4-4:坐標系與參數(shù)方程
已知極點與原點重合,極軸與x軸的正半軸重合.若曲線C1的極坐標方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數(shù)方程為:
x=1-
3
t
y=t
(t為參數(shù)).
(Ⅰ)求曲線C1的直角坐標方程;
(Ⅱ)直線?上有一定點P(1,0),曲線C1與?交于M,N兩點,求|PM|.|PN|的值.
(3)選修4-5:不等式選講
已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(Ⅱ)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•海淀區(qū)一模)設(shè)A(xA,yA),B=(xB,yB)為平面直角坐標系上的兩點,其中xA,yA,xB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|•|△y|≠0,則稱點B為點A的“相關(guān)點”,記作:B=τ(A).已知P0(x0,y0)(x0,y0∈Z)為平面上一個定點,平面上點列{Pi}滿足:Pi=τ(Pi-1),且點Pi的坐標為(xi,yi),其中i=1,2,3,…n.
(Ⅰ)請問:點P0的“相關(guān)點”有幾個?判斷這些“相關(guān)點”是否在同一個圓上,若在同一個圓上,寫出圓的方程;若不在同一個圓上,說明理由;
(Ⅱ)求證:若P0與Pn重合,n一定為偶數(shù);
(Ⅲ)若p0(1,0),且yn=100,記T=
ni=0
xi
,求T的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•海淀區(qū)一模)設(shè)A(xA,yA),B(xB,yB)為平面直角坐標系上的兩點,其中xA,yA,BxB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y=3,且|△x|-|△y|≠0,則稱點B為點A的“相關(guān)點”,記作:B=i(A).
(Ⅰ)請問:點(0,0)的“相關(guān)點”有幾個?判斷這些點是否在同一個圓上,若在,寫出圓的方程;若不在,說明理由;
(Ⅱ)已知點H(9,3),L(5,3),若點M滿足M=i(H),L=i(M),求點M的坐標;
(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)為一個定點,點列{Pi}滿足:Pi=i(Pi-1),其中i=1,2,3,…,n,求|P0Pn|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
2

(1)求異面直線PC與AD所成角的大;
(2)若平面ABCD內(nèi)有一經(jīng)過點C的曲線E,該曲線上的任一動點Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說明理由;
(3)在平面ABCD內(nèi),設(shè)點Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動點,其中G為曲線E和DC的交點.以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點.當Q點在曲線段GC上運動時,試提出一個研究有關(guān)四面P-BMN的問題(如體積、線面、面面關(guān)系等)并嘗試解決.
(說明:本小題將根據(jù)你提出的問題的質(zhì)量和解決難度分層評分;本小題的計算結(jié)果可以使用近似值,保留3位小數(shù))

查看答案和解析>>

同步練習冊答案