(2013•松江區(qū)一模)已知遞增的等差數(shù)列{an}的首項a1=1,且a1、a2、a4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)設數(shù)列{cn}對任意n∈N*,都有
c1
2
+
c2
22
+…+
cn
2n
=an+1
成立,求c1+c2+…+c2012的值.
(3)在數(shù)列{dn}中,d1=1,且滿足
dn
dn+1
=an+1
(n∈N*),求表中前n行所有數(shù)的和Sn
分析:(1)由{an}是遞增的等差數(shù)列,設公差為d(d>0),由a1、a2、a4成等比數(shù)列,能求出數(shù)列{an}的通項公式an
(2)由an+1=n+1,
c1
2
+
c2
22
+…+
cn
2n
=an+1
=n+1,對n∈N*都成立,能推導出cn=
4,n=1
2n,n≥2
,由此能求出c1+c2+…+c2012的值.
(3)根據(jù)表中構造的新數(shù)列,由它的特點寫出第n行的各數(shù)之和,代入所求數(shù)列的通項,整理出組合數(shù)形式,用二項式定理的各項系數(shù)之間的關系,得到第n行的各數(shù)之和,于是構造一個新數(shù)列用等比數(shù)列前n項和公式求解.
解答:解:(1)∵{an}是遞增的等差數(shù)列,設公差為d(d>0)…(1分)
∵a1、a2、a4成等比數(shù)列,
a
2
2
=a1a4
…(2分)
由  (1+d)2=1×(1+3d)及d>0,得d=1,…(3分)
∴an=n(n∈N*).…(4分)
(2)∵an+1=n+1,
c1
2
+
c2
22
+…+
cn
2n
=an+1
=n+1,對n∈N*都成立,
當n=1時,
c1
2
=2,得c1=4,…(5分)
當n≥2時,由
c1
2
+
c2
22
+…+
cn
2n
=an+1
=n+1,…①
c1
2
+
c2
22
+…+
cn-1
2n-1
=an
=n,…②
①-②得
cn
2n
=1
,得cn=2n…(7分)
∴cn=
4,n=1
2n,n≥2
,
∴c1+c2+…+c2012=4+22+23+…+22012=22013…(8分)
(3)∵d1=1,且滿足
dn
dn+1
=an+1
(n∈N*),
d1
d2
d2
d3
•…•
dn-1
dn
=
1
dn
=n!
∴dn=
1
n!

根據(jù)圖表可知Sn=
d1d1
d2
+
d1d2+d2d1
d3
+…+
d1dn+d2dn-1+…+dnd1
dn+1

=2+6+14+…+2n+1-2
=2•2n+1-2(n-2)
=2n+2-2n-4
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,解題時要認真審題,仔細解答,注意等價轉化思想的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)一模)設f(x)是定義在R上的函數(shù),對x∈R都有f(-x)=f(x),f(x)•f(x+2)=10,且當x∈[-2,0]時,f(x)=(
1
2
)x-1
,若在區(qū)間(-2,6]內關于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實數(shù)根,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)一模)拋物線的焦點為橢圓
x2
5
+
y2
4
=1
的右焦點,頂點在橢圓中心,則拋物線方程為
y2=4x
y2=4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)一模)定義變換T將平面內的點P(x,y)(x≥0,y≥0)變換到平面內的點Q(
x
,
y
)

若曲線C0
x
4
+
y
2
=1(x≥0,y≥0)
經(jīng)變換T后得到曲線C1,曲線C1經(jīng)變換T后得到曲線C2…,依此類推,曲線Cn-1經(jīng)變換T后得到曲線Cn,當n∈N*時,記曲線Cn與x、y軸正半軸的交點為An(an,0)和Bn(0,bn).某同學研究后認為曲線Cn具有如下性質:
①對任意的n∈N*,曲線Cn都關于原點對稱;
②對任意的n∈N*,曲線Cn恒過點(0,2);
③對任意的n∈N*,曲線Cn均在矩形OAnDnBn(含邊界)的內部,其中Dn的坐標為Dn(an,bn);
④記矩形OAnDnBn的面積為Sn,則
lim
n→∞
Sn=1

其中所有正確結論的序號是
③④
③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)一模)已知遞增的等差數(shù)列{an}的首項a1=1,且a1、a2、a4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)設數(shù)列{cn}對任意n∈N*,都有
c1
2
+
c2
22
+…+
cn
2n
=an+1
成立,求c1+c2+…+c2012的值.
(3)若bn=
an+1
an
(n∈N*),求證:數(shù)列{bn}中的任意一項總可以表示成其他兩項之積.

查看答案和解析>>

同步練習冊答案