設(shè)函數(shù)

(1)求函數(shù)上的值域;

(2)證明對于每一個,在上存在唯一的,使得

(3)求的值.

 

【答案】

(1) ;(2)證明見解析;(3)當(dāng)時,為,當(dāng)時,為

【解析】

試題分析:(1)由于可以看作為的二次函數(shù),故可利用換元法借助二次函數(shù)知識求出值域;(2)這類問題的常用方法是證明在區(qū)間是單調(diào)的,且或者,即可得證;本題中證時也可數(shù)學(xué)歸納法證明;(3)要求的值,注意分類討論,時直接得結(jié)論,那么求時,只要用分組求和即可,在時,中除第一項(xiàng)外是一個公比不為1的等比數(shù)列的和,因此先求出

,同樣在求時用分組求和的方法可求得結(jié)論.

試題解析:(1),由 令

,上單調(diào)遞增,上的值域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030303272421872189/SYS201403030328135000366897_DA.files/image001.png">.     4分

(2)對于,,從而,,在上單調(diào)遞減, ,上單調(diào)遞減.

.

.      7分

當(dāng)時,

(注用數(shù)學(xué)歸納法證明相應(yīng)給分)

,即對于任意自然數(shù)

對于每一個,存在唯一的,使得      11分

(3)

當(dāng)時,

.      14分

當(dāng)時,

     18分

考點(diǎn):(1)換元法與二次函數(shù)的值域;(2)函數(shù)的零點(diǎn);(3)分類討論與分組求和.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an
(2)已知正整數(shù)列{cn}的前項(xiàng)和sn=
1
2
(cn+
n
cn
).寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時,設(shè)dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項(xiàng)和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示:
(1)求ω,φ的值;
(2)設(shè)g(x)=2
2
f(
x
2
)f(
x
2
-
π
8
)-1,當(dāng)x∈[0,
π
2
]時,求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2(x1≠x2)是函數(shù)f(x)=ax3+bx2-a2x(a>0)的兩個極值點(diǎn).
(1)若x1=-1,x2=2,求函f(x)的解析式;
(2)若|x1|+|x2|=2
2
,求b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•金山區(qū)一模)已知等差數(shù)列{an}滿足:a1+a2n-1=2n,(n∈N*),設(shè)Sn是數(shù)列{
1an
}的前n項(xiàng)和,記f(n)=S2n-Sn
(1)求an;(n∈N*)
(2)比較f(n+1)與f(n)的大小;(n∈N*)
(3)如果函數(shù)g(x)=log2x-12f(n)(其中x∈[a,b])對于一切大于1的自然數(shù)n,其函數(shù)值都小于零,那么a、b應(yīng)滿足什么條件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1的最;

2當(dāng)函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案