設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列,則
a2
a1
等于( 。
A、1B、2C、3D、4
分析:由S1,S2,S4成等比數(shù)列,根據(jù)等比數(shù)列的性質(zhì)得到S22=S1S4,然后利用等差數(shù)列的前n項(xiàng)和的公式分別表示出各項(xiàng)后,代入即可得到首項(xiàng)和公差的關(guān)系式,根據(jù)公差不為0,即可求出公差與首項(xiàng)的關(guān)系并解出公差d,然后把所求的式子利用等差數(shù)列的通項(xiàng)公式化簡(jiǎn)后,把公差d的關(guān)系式代入即可求出比值.
解答:解:由S1,S2,S4成等比數(shù)列,
∴(2a1+d)2=a1(4a1+6d).
∵d≠0,∴d=2a1
a2
a1
=
a1+d
a1
=
3a1
a1
=3.
故選C
點(diǎn)評(píng):此題考查學(xué)生掌握等比數(shù)列的性質(zhì),靈活運(yùn)用等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和的公式化簡(jiǎn)求值,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列.
(1)求
a5a7
的值;
(2)若a5=3,求an及Sn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是公差不為0的等差數(shù)列an的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列.(1)求
a2a1
的值;(2)若a5=9,求an及Sn,的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,若a1=2a8-3a4,則 
s8
s16
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練3練習(xí)卷(解析版) 題型:選擇題

設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,S1,S2,S4成等比數(shù)列,等于(  )

(A)1 (B)2 (C)3 (D)4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案